An exocellular D- glucansucrase that synthesizes a water-soluble, alpha-D-(1----6)-linked D-glucan having a high proportion of alpha-D-(1----3) branches was purified from the culture broth of Streptococcus mutans 6715. The rate of incorporation of D-[14C]glucose from [14C]sucrose into D-glucan of high molecular weight by this enzyme was increased (stimulated) by the presence of exogenous Leuconostoc mesenteroides B- 512F dextran, and it was found that this dextran could act as an acceptor. A highly branched dextran, containing 45-50% of alpha-D-(1----3) branch linkages, did not stimulate the enzyme nearly so much as B- 512F dextran, which has a low degree (5%) of alpha-D-(1----3) branches. We interpret this as evidence that the stimulating effects of dextran are not due to priming. If they were, the more highly branched dextran should have produced the greatest stimulation per unit weight, because a much greater number of nonreducing-end, priming sites would be available. We show that the D- glucansucrase was capable of transferring D-glucosyl groups from sucrose to B- 512F dextran to form alpha-D-(1----3) branches, thereby rendering the dextran more resistant to hydrolysis by endodextranase . The presence of 1.6M ammonium sulfate caused the enzyme to synthesize a D-glucan having a much higher percentage of alpha-D-(1----3) linkages.