Ca2+ transport in mitochondria of the ciliate protozoan Tetrahymena pyriformis. 1984

J V Kim, and L J Kudzina, and V P Zinchenko, and J V Evtodienko

Mitochondria isolated from the late-exponential non-shaken culture of the ciliate protozoan Tetrahymena pyriformis GL was investigated. The presence of energy-dependent Ca2+ transport system was shown. In the main the properties of this system have been essentially the same as in mitochondria of vertebrate organisms. The isolated mitochondria contained 23 +/- 5 ng-ion Ca2+ per mg of protein. The intramitochondrial free concentration of Ca2+ was measured in the presence of uncoupler FCCP with the use of fluorescent Ca2+ chelator chlortetracycline and null point titration method. In the absence of phosphate, free [Ca2+] varied from 1 to 2.5 mM depending on the internal Ca2+ content. In the presence of 2 mM phosphate, free [Ca2+]in has not exceeded 0.1-0.3 mM. It was shown that ruthenium red and Mg2+ in different manner have an inhibitory effect on Ca2+ transport. Besides this, Mg2+ also has a stabilizing effect on mitochondria, possibly, by preventing passive ions leaks across the membrane.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002751 Chlortetracycline A TETRACYCLINE with a 7-chloro substitution. Aureocyclin,Aureomycin,Aureomycine,Biomycin,Chlorotetracycline,Chlortetracycline Bisulfate,Chlortetracycline Hydrochloride,Chlortetracycline Monohydrochloride,Chlortetracycline Sulfate (1:1),Chlortetracycline Sulfate (2:1),Chlortetracycline, 4-Epimer,Chlortetracycline, Calcium Salt,4-Epimer Chlortetracycline,Bisulfate, Chlortetracycline,Calcium Salt Chlortetracycline,Chlortetracycline, 4 Epimer,Hydrochloride, Chlortetracycline,Monohydrochloride, Chlortetracycline,Salt Chlortetracycline, Calcium
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J V Kim, and L J Kudzina, and V P Zinchenko, and J V Evtodienko
August 1959, Biochimica et biophysica acta,
J V Kim, and L J Kudzina, and V P Zinchenko, and J V Evtodienko
June 1967, Proceedings of the National Academy of Sciences of the United States of America,
J V Kim, and L J Kudzina, and V P Zinchenko, and J V Evtodienko
January 1997, Membrane & cell biology,
J V Kim, and L J Kudzina, and V P Zinchenko, and J V Evtodienko
December 1984, Veterinarni medicina,
J V Kim, and L J Kudzina, and V P Zinchenko, and J V Evtodienko
December 1947, The Anatomical record,
J V Kim, and L J Kudzina, and V P Zinchenko, and J V Evtodienko
March 1971, Journal of general microbiology,
J V Kim, and L J Kudzina, and V P Zinchenko, and J V Evtodienko
November 1971, The Journal of biological chemistry,
J V Kim, and L J Kudzina, and V P Zinchenko, and J V Evtodienko
January 1991, DNA sequence : the journal of DNA sequencing and mapping,
J V Kim, and L J Kudzina, and V P Zinchenko, and J V Evtodienko
December 1965, Nature,
J V Kim, and L J Kudzina, and V P Zinchenko, and J V Evtodienko
November 1984, Veterinarni medicina,
Copied contents to your clipboard!