Somatomedin/insulin-like growth factor tissue receptors. 1984

S P Nissley, and M M Rechler

There are two types of Sm/IGF receptors based on results of competitive binding experiments and investigations of receptor structure. The type I receptor preferentially interacts with IGF I rather than IGF II and interacts weakly with insulin. This receptor has a binding subunit of Mr = 130 000 which is disulphide bonded to form larger structures of Mr greater than 300 000. The type II receptor prefers IGF II to IGF I and does not interact with insulin. Its binding subunit is not linked by disulphide bonds to other membrane components (Mr = 260 000 with reduction, 220 000 without reduction). Subunit organization of the type I receptor appears to be similar to that of the insulin receptor but it is unlikely that the insulin and Sm/IGF binding sites are on a common alpha subunit. The type I receptor is down-regulated by IGFs and insulin. A rapid increase in ligand binding to the type II receptor by insulin has been described in intact rat adipocytes. The original idea that an IGF receptor mediates the growth-promoting action of both IGFs and insulin while acute metabolic effects of insulin and IGFs are mediated by the insulin receptor is an oversimplification . There now are clear examples of insulin stimulating growth by acting through the insulin receptor and, conversely, instances of IGF stimulating glucose transport by acting through an IGF receptor. Radioreceptor assays which measure IGF I in preference to IGF II (human placental membrane) and which measure IGF II in preference to IGF I (rat liver and rat placental membranes) have been utilized for clinical measurements of Sm/IGF levels, but are less specific than the respective radioimmunoassays. With the demonstration of Sm/IGF receptors on circulating human mononuclear cells and human skin fibroblasts, it is expected that these systems will be useful for investigations of patients with possible end-organ resistance to Sm/IGF.

UI MeSH Term Description Entries
D007163 Immunosorbent Techniques Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody. Immunoadsorbent Techniques,Immunoadsorbent Technics,Immunosorbent Technics,Immunoadsorbent Technic,Immunoadsorbent Technique,Immunosorbent Technic,Immunosorbent Technique,Technic, Immunoadsorbent,Technic, Immunosorbent,Technics, Immunoadsorbent,Technics, Immunosorbent,Technique, Immunoadsorbent,Technique, Immunosorbent,Techniques, Immunoadsorbent,Techniques, Immunosorbent
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007335 Insulin-Like Growth Factor II A well-characterized neutral peptide believed to be secreted by the LIVER and to circulate in the BLOOD. It has growth-regulating, insulin-like and mitogenic activities. The growth factor has a major, but not absolute, dependence on SOMATOTROPIN. It is believed to be a major fetal growth factor in contrast to INSULIN-LIKE GROWTH FACTOR I, which is a major growth factor in adults. IGF-II,Multiplication-Stimulating Activity,Somatomedin MSA,IGF-2,Insulin Like Growth Factor II,Insulin-Like Somatomedin Peptide II,Multiplication-Stimulating Factor,Somatomedin A,Factor, Multiplication-Stimulating,Insulin Like Somatomedin Peptide II,Multiplication Stimulating Activity,Multiplication Stimulating Factor
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies

Related Publications

S P Nissley, and M M Rechler
August 2002, Nihon rinsho. Japanese journal of clinical medicine,
S P Nissley, and M M Rechler
January 1987, Methods in enzymology,
S P Nissley, and M M Rechler
August 1986, The Journal of investigative dermatology,
S P Nissley, and M M Rechler
August 1986, Clinics in endocrinology and metabolism,
S P Nissley, and M M Rechler
January 1987, Methods in enzymology,
S P Nissley, and M M Rechler
January 1985, Methods in enzymology,
S P Nissley, and M M Rechler
January 1990, Progress in clinical and biological research,
S P Nissley, and M M Rechler
January 1991, Acta paediatrica Scandinavica. Supplement,
Copied contents to your clipboard!