Cell-free translation of adenovirus 2 E1a- and E1b-specific mRNAs and evidence that E1a-related polypeptides are produced from E1a-E1b overlapping mRNA. 1984

S Hashimoto, and J Symington, and T Matsuo

We have characterized the polypeptides translated in vitro by mRNAs of early region 1 (E1) of human adenovirus (Ad) type 2. Poly (A+) polyribosomal RNA was isolated from early Ad2-infected cells, the viral specific mRNAs were selected by hybridization to Ad2 E1a and E1b DNA, and the mRNAs were translated in vitro using [35S]methionine as a labeled precursor with a rabbit reticulocyte lysate. E1a-selected mRNA was translated to the 45-58-kDa cluster of polypeptides. We show here that E1b-selected mRNA can also be translated to the 45-58-kDa cluster of polypeptides in addition to the major 19-kDa polypeptide. The E1b 58-kDa polypeptide was produced only at a low level unless E1b mRNA is fractionated before translation to enrich for the 58-kDa mRNA. Translation of E1b region-selected mRNAs that have been fractionated by size shows that the 22 S mRNA fraction is translated to at least the 53-58-kDa E1a-related polypeptides as well as to E1b 58- and 19-kDa polypeptides. Our experiments suggest that the 22 S mRNA fraction includes E1a-E1b overlapping mRNA which was translated to E1a-related polypeptides as well as E1b 22 S mRNA. When compared by two-dimensional gel electrophoresis and by tryptic peptide mapping, the cluster of polypeptides translated from E1a-selected mRNA and the cluster translated from E1b-selected mRNA were distinguishable. A possible explanation for this is discussed, based upon splicing sites of the E1a-E1b overlapping mRNA which would result in an amino acid sequence with a COOH-terminal end slightly different from that of E1a polypeptides.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005470 Fluorometry An analytical method for detecting and measuring FLUORESCENCE in compounds or targets such as cells, proteins, or nucleotides, or targets previously labeled with FLUORESCENCE AGENTS. Fluorimetry,Fluorometric Analysis,Analysis, Fluorometric
D000260 Adenoviruses, Human Species of the genus MASTADENOVIRUS, causing a wide range of diseases in humans. Infections are mostly asymptomatic, but can be associated with diseases of the respiratory, ocular, and gastrointestinal systems. Serotypes (named with Arabic numbers) have been grouped into species designated Human adenovirus A-G. APC Viruses,APC Virus,Adenovirus, Human,Human Adenovirus,Human Adenoviruses
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

S Hashimoto, and J Symington, and T Matsuo
December 1986, Nucleic acids research,
S Hashimoto, and J Symington, and T Matsuo
November 1990, Journal of virology,
S Hashimoto, and J Symington, and T Matsuo
January 1982, Methods in enzymology,
S Hashimoto, and J Symington, and T Matsuo
November 1988, Gene,
S Hashimoto, and J Symington, and T Matsuo
July 1999, The Journal of general virology,
Copied contents to your clipboard!