Biosynthesis of calmodulin in normal and virus-transformed chicken embryo fibroblasts. 1984

J G Zendegui, and R E Zielinski, and D M Watterson, and L J Van Eldik

We report here that the higher levels of calmodulin in transformed chicken embryo fibroblasts are due to an increase in the rate of synthesis of calmodulin that results from an increased amount of calmodulin-specific mRNA in transformed cells. Transformation of several types of eucaryotic cells by oncogenic viruses results in a two- to threefold increase in the intracellular levels of calmodulin. We used the normal chicken embryo fibroblast and its Rous sarcoma virus-transformed counterpart to examine the biosynthesis of calmodulin. We show that the higher levels of calmodulin found in transformed fibroblasts appear to be the consequence of a selective increase in the rate of synthesis of calmodulin above that of total soluble or total cellular protein. A significant difference in the rate of degradation of calmodulin or total protein between transformed and normal cells was not detected. We also examined the mechanism of the increased synthesis rate of calmodulin and show that the levels of calmodulin mRNA are increased in transformed fibroblasts as measured by both translational activity and hybridization to a calmodulin cDNA probe. It is suggested by these data that the higher levels of calmodulin in transformed cells may result from a specific increase in the rate of either calmodulin gene transcription or mRNA processing.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001358 Avian Sarcoma Viruses Group of alpharetroviruses (ALPHARETROVIRUS) producing sarcomata and other tumors in chickens and other fowl and also in pigeons, ducks, and RATS. Avian Sarcoma Virus B77,Chicken Sarcoma Virus B77,Chicken Tumor 1 Virus,Fujinami sarcoma virus,Sarcoma Viruses, Avian,Avian Sarcoma Virus,Fujinami sarcoma viruses,Sarcoma Virus, Avian,Virus, Avian Sarcoma,Viruses, Avian Sarcoma,sarcoma virus, Fujinami,virus, Fujinami sarcoma,viruses, Fujinami sarcoma

Related Publications

J G Zendegui, and R E Zielinski, and D M Watterson, and L J Van Eldik
April 1979, Journal of cellular physiology,
J G Zendegui, and R E Zielinski, and D M Watterson, and L J Van Eldik
May 1994, Pflugers Archiv : European journal of physiology,
J G Zendegui, and R E Zielinski, and D M Watterson, and L J Van Eldik
October 1984, Molecular and cellular biology,
J G Zendegui, and R E Zielinski, and D M Watterson, and L J Van Eldik
April 1993, Proceedings of the National Academy of Sciences of the United States of America,
J G Zendegui, and R E Zielinski, and D M Watterson, and L J Van Eldik
July 1974, Cancer research,
J G Zendegui, and R E Zielinski, and D M Watterson, and L J Van Eldik
January 1973, Journal of supramolecular structure,
J G Zendegui, and R E Zielinski, and D M Watterson, and L J Van Eldik
March 1989, Oncogene,
J G Zendegui, and R E Zielinski, and D M Watterson, and L J Van Eldik
February 1990, Molecular and cellular biology,
J G Zendegui, and R E Zielinski, and D M Watterson, and L J Van Eldik
April 1983, The Journal of biological chemistry,
J G Zendegui, and R E Zielinski, and D M Watterson, and L J Van Eldik
January 1980, Biochimica et biophysica acta,
Copied contents to your clipboard!