Acetylcholinesterase and choline acetyltransferase staining of neurons in the opossum esophagus. 1984

L L Seelig, and P Doody, and L Brainard, and J S Gidda, and R K Goyal

The purpose of the present investigation was to identify and compare cholinergic intramural neurons in the lower esophageal sphincter and esophageal body by histochemical staining for acetylcholinesterase and the enzyme that synthesizes acetylcholine, choline acetyltransferase. Opossums were anesthetized and their abdominal cavity was opened by a midline incision to expose the esophagogastric junction. The lower esophageal sphincter was identified manometerically and localized in situ with markers. Tissues were removed, rapidly frozen in freon cooled with liquid nitrogen and serial cryostat sections were obtained from the lower esophageal sphincter and esophageal body. Sections were stained with one of the above histochemical procedures and adjacent sections were stained with Solachrome cyanin , which differentially stains nerve elements from muscle fibers. The muscle of the lower esophageal sphincter and esophageal body was stained with nonspecific cholinesterase with some selectivity of intensity of reaction in the various smooth muscle layers. All identifiable plexus neurons in the esophagus stained for nonspecific cholinesterase and acetylcholinesterase. Nerve fiber tracts were also stained for acetylcholinesterase within the longitudinal and circular layers of the tunica muscularis. Reaction for choline acetyltransferase showed no staining in the muscle layers or nerve fiber tracts of either part of the esophagus studied; however, selected neurons within the myenteric plexus of both regions (approximately 38%) were reactive. There was no significant difference in the number of positive choline acetyltransferase neurons in the lower esophageal sphincter or esophageal body.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009893 Opossums New World marsupials of the family Didelphidae. Opossums are omnivorous, largely nocturnal and arboreal MAMMALS, grow to about three feet in length, including the scaly prehensile tail, and have an abdominal pouch in which the young are carried at birth. Didelphidae,Opossum
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D004947 Esophagus The muscular membranous segment between the PHARYNX and the STOMACH in the UPPER GASTROINTESTINAL TRACT.
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings

Related Publications

L L Seelig, and P Doody, and L Brainard, and J S Gidda, and R K Goyal
May 1972, Experientia,
L L Seelig, and P Doody, and L Brainard, and J S Gidda, and R K Goyal
November 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
L L Seelig, and P Doody, and L Brainard, and J S Gidda, and R K Goyal
October 1984, Neuroscience,
L L Seelig, and P Doody, and L Brainard, and J S Gidda, and R K Goyal
September 1978, Biology of reproduction,
L L Seelig, and P Doody, and L Brainard, and J S Gidda, and R K Goyal
August 2010, Cold Spring Harbor protocols,
L L Seelig, and P Doody, and L Brainard, and J S Gidda, and R K Goyal
January 1978, Muscle & nerve,
L L Seelig, and P Doody, and L Brainard, and J S Gidda, and R K Goyal
September 1993, Brain, behavior, and immunity,
L L Seelig, and P Doody, and L Brainard, and J S Gidda, and R K Goyal
April 1975, Experimental neurology,
L L Seelig, and P Doody, and L Brainard, and J S Gidda, and R K Goyal
January 1985, Journal fur Hirnforschung,
L L Seelig, and P Doody, and L Brainard, and J S Gidda, and R K Goyal
July 1973, Experimental neurology,
Copied contents to your clipboard!