Monoclonal antibodies to Salmonella lipopolysaccharide: anti-O-polysaccharide antibodies protect C3H mice against challenge with virulent Salmonella typhimurium. 1984

D E Colwell, and S M Michalek, and D E Briles, and E Jirillo, and J R McGhee

The present investigation reports the production of monoclonal antibodies to antigenic determinants of the O-polysaccharide of Salmonella typhimurium lipopolysaccharide (LPS), and assesses the effectiveness of these antibodies in protecting C3H mice against the lethal effects of Salmonella infection. Hybridomas were generated by fusing spleen cells from (BALB/c X A/J)F1 (CAF1) mice hyperimmunized by i.v. injection with acetone-killed S. typhimurium SR-11 with X63-Ag8.653 murine myeloma cells. Hybridomas producing antibodies reactive with S. typhimurium SR-11 whole cells were subcloned, and seven of the resulting clones as well as one previously described clone were selected for use in the studies reported here. Monoclonal antibodies from these eight clones were of the IgG1 (1), IgG3 (6), or IgM (1) isotype and were specific for the O-polysaccharide region of Salmonella LPS, reacting with LPS from smooth S. typhimurium SR-11 and LT-2, but not with LPS from rough S. minnesota R60 (Ra), R345 (Rb), or R595 (Re). The effectiveness of each monoclonal antibody in protecting C3H/HeN and C3H/HeJ mice against the lethal effects of Salmonella infection was evaluated by comparing the median length of survival of groups of mice given antibody by i.p. injection before i.p. challenge with virulent S. typhimurium SR-11 to that of animals that received no antibody. Three out of eight monoclonal anti-O-polysaccharide antibodies, ST-1 (IgM), 10-5-47 (IgG3), and 10-5-6 (IgG3), provided significant (p less than 0.01) protection to C3H/HeN mice challenged with approximately 10(4) LD100 of Salmonella. Only antibodies ST-1 and 10-5-6, however, extended the median length of survival of C3H/HeJ mice beyond that of infected controls. Mouse antiserum prepared against S. typhimurium SR-11 was equally protective in C3H/HeJ mice. In an attempt to understand the contribution of antibody specificity to the relative differences in the protective capacities of the monoclonal antibodies, their reactivities with several Salmonella reference strains of different classical serotypes were examined. Although some differences in reactivity against the different strains were apparent, this approach was not adequate for defining the fine specificity of these monoclonal antibodies. The results of this study provide evidence that monoclonal antibodies with specificity to the O-polysaccharide region of Salmonella LPS can protect C3H mice against challenge with the homologous bacterial strain.

UI MeSH Term Description Entries
D007116 Immunization, Passive Transfer of immunity from immunized to non-immune host by administration of serum antibodies, or transplantation of lymphocytes (ADOPTIVE TRANSFER). Convalescent Plasma Therapy,Immunoglobulin Therapy,Immunotherapy, Passive,Normal Serum Globulin Therapy,Passive Antibody Transfer,Passive Transfer of Immunity,Serotherapy,Passive Immunotherapy,Therapy, Immunoglobulin,Antibody Transfer, Passive,Passive Immunization,Therapy, Convalescent Plasma,Transfer, Passive Antibody
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D000937 Antigen-Antibody Reactions The processes triggered by interactions of ANTIBODIES with their ANTIGENS. Antigen Antibody Reactions,Antigen-Antibody Reaction,Reaction, Antigen-Antibody,Reactions, Antigen-Antibody
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D012486 Salmonella typhimurium A serotype of Salmonella enterica that is a frequent agent of Salmonella gastroenteritis in humans. It also causes PARATYPHOID FEVER. Salmonella typhimurium LT2

Related Publications

D E Colwell, and S M Michalek, and D E Briles, and E Jirillo, and J R McGhee
January 2023, Frontiers in cellular and infection microbiology,
D E Colwell, and S M Michalek, and D E Briles, and E Jirillo, and J R McGhee
January 1999, Research in microbiology,
D E Colwell, and S M Michalek, and D E Briles, and E Jirillo, and J R McGhee
January 2019, Frontiers in immunology,
D E Colwell, and S M Michalek, and D E Briles, and E Jirillo, and J R McGhee
January 1996, Applied and environmental microbiology,
D E Colwell, and S M Michalek, and D E Briles, and E Jirillo, and J R McGhee
August 1988, Infection and immunity,
D E Colwell, and S M Michalek, and D E Briles, and E Jirillo, and J R McGhee
October 2000, FEMS immunology and medical microbiology,
D E Colwell, and S M Michalek, and D E Briles, and E Jirillo, and J R McGhee
June 2017, Veterinary microbiology,
D E Colwell, and S M Michalek, and D E Briles, and E Jirillo, and J R McGhee
May 1986, Infection and immunity,
D E Colwell, and S M Michalek, and D E Briles, and E Jirillo, and J R McGhee
November 1992, Infection and immunity,
D E Colwell, and S M Michalek, and D E Briles, and E Jirillo, and J R McGhee
March 1986, Infection and immunity,
Copied contents to your clipboard!