A conditioning lesion of the peripheral axons of dorsal root ganglion cells accelerates regeneration of only their peripheral axons. 1984

M M Oblinger, and R J Lasek

Axotomy of the peripheral axon of dorsal root ganglion (DRG) cells is known to result in chromatolysis and changes in protein synthesis in DRG cells. We investigated whether a stimulus produced by peripheral branch axotomy would affect the regenerative properties of both the central and peripheral axon of the DRG cell equally. To examine this question, a conditioning crush lesion was made distally on the sciatic nerve 2 weeks prior to a testing lesion of either the dorsal root or peripheral branch axon near the DRG. Fast axonal transport of radioactive proteins was used to assess regeneration of DRG axons. In the adult rat, leading peripheral branch axons normally regenerate at a rate of 4.4 mm/day. If a conditioning lesion of the sciatic nerve is made 2 weeks before the test lesion, the rate of peripheral branch axonal regeneration increases by 25% to 5.5 mm/day. This effect is not limited to the fastest growing axons in the nerve since a population of more slowly growing axons also exhibits accelerated outgrowth in response to a prior peripheral axotomy. In contrast to this, the fastest growing central branch axons of DRG cells, which normally regenerate at a rate of 2.5 mm/day, are not significantly affected by a prior peripheral axotomy. A population of more slowly growing axons in the dorsal root also does not exhibit accelerated outgrowth in response to a peripheral conditioning lesion. The results of these experiments indicate that changes in the DRG neuron's metabolism induced by prior axotomy of its peripheral axon do not affect the regenerative properties of both axons equally. This raises the possibility that accelerated axonal outgrowth in only one axonal branch results from a differentially regulated supply of proteins to the two axons by the DRG cell body.

UI MeSH Term Description Entries
D008297 Male Males
D009409 Nerve Crush Treatment of muscles and nerves under pressure as a result of crush injuries. Crush, Nerve
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M M Oblinger, and R J Lasek
September 1981, Experimental neurology,
M M Oblinger, and R J Lasek
May 1984, The Journal of comparative neurology,
M M Oblinger, and R J Lasek
January 2022, Frontiers in cellular neuroscience,
M M Oblinger, and R J Lasek
November 1997, Journal of neurophysiology,
M M Oblinger, and R J Lasek
November 1984, The Journal of experimental zoology,
M M Oblinger, and R J Lasek
May 1991, Neuroscience letters,
M M Oblinger, and R J Lasek
February 2023, Journal of visualized experiments : JoVE,
M M Oblinger, and R J Lasek
April 1986, Brain research,
M M Oblinger, and R J Lasek
September 1978, Brain research,
Copied contents to your clipboard!