Monoclonal antibodies against distinct determinants of histone H5 bind to chromatin. 1984

E Mendelson, and M Bustin

A series of monoclonal antibodies specific for distinguishable epitopes in chromosomal protein histone H5 were obtained from mice immunized with either free H5 or H5 . RNA complexes. The antibodies elicited by H5 could be distinguished from those elicited by H5 . RNA by their binding to native or acid-denatured H5, by their interaction with the globular region of H5, and by their cross-reactivity with H1o. The specificity of the antibodies was assessed by enzyme-linked immunosorbent assay (ELISA) and immunoblotting experiments. The antibodies could distinguish between H5 and the closely related histones H1 and H1o. The binding of some of the antibodies to the antigens was dependent on the type of assay used, suggesting nonrandom binding of the antigen to the solid supports used in ELISA and immunoblotting. Competitive ELISA experiments indicate that 8 of the 11 antibodies characterized bind to distinct epitopes. Three monoclonal antibodies bind to epitopes which are in close spatial proximity, causing mutual steric hindrance. The monoclonal antibodies bind to nuclei of fixed cells and to isolated chromatin, indicating that the epitopes are present both in the purified protein and in chromatin-complexed H5. These monoclonal antibodies can be used to study the organization of distinct regions of histones H5 and H1o in chromatin and chromosomes.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005260 Female Females
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005779 Immunodiffusion Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction. Gel Diffusion Tests,Diffusion Test, Gel,Diffusion Tests, Gel,Gel Diffusion Test,Immunodiffusions,Test, Gel Diffusion,Tests, Gel Diffusion
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000936 Antigen-Antibody Complex The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES. Immune Complex,Antigen-Antibody Complexes,Immune Complexes,Antigen Antibody Complex,Antigen Antibody Complexes,Complex, Antigen-Antibody,Complex, Immune,Complexes, Antigen-Antibody,Complexes, Immune

Related Publications

E Mendelson, and M Bustin
November 1985, The Journal of biological chemistry,
E Mendelson, and M Bustin
April 1986, Journal of immunology (Baltimore, Md. : 1950),
E Mendelson, and M Bustin
November 1988, The Journal of biological chemistry,
E Mendelson, and M Bustin
December 2009, Journal of virological methods,
E Mendelson, and M Bustin
September 2001, Journal of clinical microbiology,
E Mendelson, and M Bustin
October 1988, Journal of molecular biology,
Copied contents to your clipboard!