The section-Golgi-impregnation procedure--3. Combination of Golgi-impregnation with enzyme histochemistry and electron microscopy to characterize acetylcholinesterase-containing neurons in the rat neostriatum. 1984

J P Bolam, and C A Ingham, and A D Smith

Three morphologically distinct types of neuron that contain acetylcholinesterase have been distinguished by Golgi-impregnation of sections of the rat neostriatum that had been incubated to reveal acetylcholinesterase activity. The neuron that stained most intensely for acetylcholinesterase was a large cell, with smooth or sparsely spiny dendrites; the axon of one these neurons was partially impregnated by the Golgi stain and had local axon collaterals (type 1). Another acetylcholinesterase-containing neuron had a small to medium-size cell body with long sparsely spiny dendrites emerging from opposite poles (type 2). The third type of neuron that contained acetylcholinesterase was medium to large size and had many primary, sparsely spiny dendrites that branched frequently (type 3). Examination of the same Golgi-impregnated, acetylcholinesterase-stained neurons that had been studied in the light microscope by electron microscopy allowed us to distinguish several other differences between the three types of neuron. Whereas all three types had acetylcholinesterase reaction product in the endoplasmic reticulum and along the nuclear envelope, only neurons of type 1 displayed reaction product in the Golgi apparatus. All three types of neuron received synaptic input, mainly along their dendrites. It is concluded that the combination of Golgi-impregnation with histochemical procedures that demonstrate endogenous enzyme activity can be applied to reveal the morphological characteristics, synaptic input and local synaptic output of neurons with specific biochemical properties.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D005260 Female Females
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J P Bolam, and C A Ingham, and A D Smith
October 1986, The Journal of comparative neurology,
J P Bolam, and C A Ingham, and A D Smith
September 1984, Journal of neuroscience methods,
J P Bolam, and C A Ingham, and A D Smith
December 1980, Neuroscience letters,
Copied contents to your clipboard!