The significance of alpha/beta interferons and gamma interferon produced in mice infected with Listeria monocytogenes. 1984

A Nakane, and T Minagawa

Interferon (IFN)-alpha/beta was induced in the circulation of mice infected intravenously with Listeria monocytogenes 24 to 72 hr after infection, but was not induced by the administration of heat-killed Listeria, listerial cell wall fraction (LCWF), or listerial soluble fraction. Appearance of IFN-alpha/beta showed a pattern similar to that of the growth of bacteria in the spleen and the liver of mice. IFN-alpha/beta production was abrogated by pretreatment of mice with anti-asialo GM1 antibody, antithymocyte serum, or hydrocortisone, but not with cyclophosphamide or carrageenan. Such treatments which suppressed IFN-alpha/beta production did not influence bacterial growth in the organs of mice in the early stage of Listeria infection. Administration of IFN-alpha/beta exogenously also did not. After 5 days of infection when the specific resistance against reinfection with Listeria was established, IFN-gamma but not IFN-alpha/beta was induced in the circulation 3 to 6 hr after stimulation with LCWF or reinfection with Listeria. IFN-gamma production was abrogated completely by cyclophosphamide and antithymocyte serum, and partially by hydrocortisone and carrageenan, but not by anti-asialo GM1 antibody in Listeria-infected mice treated with these agents before induction of IFN-gamma by LCWF. Presumably, IFN-alpha/beta might be produced by asialo GM1-bearing cells but IFN-gamma might not. However, IFN-gamma production was suppressed in Listeria-infected mice, when IFN-alpha/beta production had been inhibited by treatment with anti-asialo GM1 antibody or when the IFN produced had been neutralized with anti-mouse IFN-alpha/beta antibody. Therefore, it is conceivable that IFN-alpha/beta might be essential for the generation or the expression of antigen-specific T cells involving IFN-gamma production and acquired resistance during Listeria infection. In fact, the bacterial growth in the organs of mice in the early stage of infection was normal in IFN-alpha/beta-depleted mice but it resulted in the delay of T-cell-dependent elimination of bacteria from the organs of mice in the late stage.

UI MeSH Term Description Entries
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D007370 Interferon Type I Interferon secreted by leukocytes, fibroblasts, or lymphoblasts in response to viruses or interferon inducers other than mitogens, antigens, or allo-antigens. They include alpha- and beta-interferons (INTERFERON-ALPHA and INTERFERON-BETA). Interferons Type I,Type I Interferon,Type I Interferons,Interferon, Type I,Interferons, Type I
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007372 Interferons Proteins secreted by vertebrate cells in response to a wide variety of inducers. They confer resistance against many different viruses, inhibit proliferation of normal and malignant cells, impede multiplication of intracellular parasites, enhance macrophage and granulocyte phagocytosis, augment natural killer cell activity, and show several other immunomodulatory functions. Interferon
D008088 Listeriosis Infections with bacteria of the genus LISTERIA. Listeria Infections,Infections, Listeria,Infection, Listeria,Listeria Infection,Listerioses
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D005677 G(M1) Ganglioside A specific monosialoganglioside that accumulates abnormally within the nervous system due to a deficiency of GM1-b-galactosidase, resulting in GM1 gangliosidosis. GM1 Ganglioside,Monosialosyl Tetraglycosyl Ceramide,GM1a Monosialoganglioside,Ceramide, Monosialosyl Tetraglycosyl,Ganglioside, GM1,Monosialoganglioside, GM1a,Tetraglycosyl Ceramide, Monosialosyl
D006028 Glycosphingolipids Lipids containing at least one monosaccharide residue and either a sphingoid or a ceramide (CERAMIDES). They are subdivided into NEUTRAL GLYCOSPHINGOLIPIDS comprising monoglycosyl- and oligoglycosylsphingoids and monoglycosyl- and oligoglycosylceramides; and ACIDIC GLYCOSPHINGOLIPIDS which comprises sialosylglycosylsphingolipids (GANGLIOSIDES); SULFOGLYCOSPHINGOLIPIDS (formerly known as sulfatides), glycuronoglycosphingolipids, and phospho- and phosphonoglycosphingolipids. (From IUPAC's webpage) Asialoganglioside,Asialogangliosides,Glycosphingolipid,Sphingoglycolipid,Sphingoglycolipids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.

Related Publications

A Nakane, and T Minagawa
January 1982, Nihon rinsho. Japanese journal of clinical medicine,
A Nakane, and T Minagawa
January 1985, Acta microbiologica Hungarica,
A Nakane, and T Minagawa
April 1985, The Journal of general virology,
A Nakane, and T Minagawa
January 1971, Applied microbiology,
Copied contents to your clipboard!