Poly(A)+ RNA metabolism during change of physiological state of Tetrahymena pyriformis cells. 1984

M C Soares, and J F de Castro, and E Rondinelli, and E de Carvalho, and C Samel, and F T de Castro

In the present work the metabolism of poly(A)+ RNA was investigated in cells of Tetrahymena pyriformis derived either from stationary cultures or from starved suspensions that were initiating growth. Under these circumstances the organisms derived from stationary cultures synthesize ribosomal and poly(A)+ RNA and form polysomes. In the presence of actinomycin D (actD) the observed expansion of the polysomal population is arrested. Pre-starved cells, on the other hand, start making polysomes in the virtual absence of ribosomal and poly(A)+ RNA synthesis soon after being transferred to peptone medium. In this case polysome formation is only partially sensitive to actD. These results have been interpreted as indicating that, in the beginning of growth, cells derived from stationary cultures are dependent on RNA synthesis for polysome formation, whereas pre-starved cells use pre-synthesized RNA for the same purpose.

UI MeSH Term Description Entries
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S

Related Publications

M C Soares, and J F de Castro, and E Rondinelli, and E de Carvalho, and C Samel, and F T de Castro
December 1976, European journal of biochemistry,
M C Soares, and J F de Castro, and E Rondinelli, and E de Carvalho, and C Samel, and F T de Castro
October 1966, Journal of cellular physiology,
M C Soares, and J F de Castro, and E Rondinelli, and E de Carvalho, and C Samel, and F T de Castro
February 1974, The Journal of protozoology,
M C Soares, and J F de Castro, and E Rondinelli, and E de Carvalho, and C Samel, and F T de Castro
October 1973, Japanese journal of pharmacology,
M C Soares, and J F de Castro, and E Rondinelli, and E de Carvalho, and C Samel, and F T de Castro
January 1964, Comptes-rendus des travaux du Laboratoire Carlsberg,
M C Soares, and J F de Castro, and E Rondinelli, and E de Carvalho, and C Samel, and F T de Castro
January 1971, Zeitschrift fur allgemeine Mikrobiologie,
M C Soares, and J F de Castro, and E Rondinelli, and E de Carvalho, and C Samel, and F T de Castro
January 1990, Microbiologica,
M C Soares, and J F de Castro, and E Rondinelli, and E de Carvalho, and C Samel, and F T de Castro
January 1997, Biofizika,
M C Soares, and J F de Castro, and E Rondinelli, and E de Carvalho, and C Samel, and F T de Castro
August 1975, European journal of biochemistry,
M C Soares, and J F de Castro, and E Rondinelli, and E de Carvalho, and C Samel, and F T de Castro
April 1972, European journal of biochemistry,
Copied contents to your clipboard!