Differential expression of the cellular src gene during vertebrate development. 1984

M Schartl, and A Barnekow

Cellular genes that are homologous to the transforming genes of certain RNA tumor viruses are suspected to play a functional role during normal developmental processes. To investigate this further, we are studying the expression of the cellular homolog of the Rous sarcoma virus transforming gene (c-src) during embryogenesis of fish, frog, and chicken by quantitative determination of the activity of the c-src encoded protein kinase (pp60c-src). The kinase activity from embryos of fish, frog, and chicken displays the same enzymatic characteristics as the kinase from adult animals: It phosphorylates only tyrosine residues in protein substrates, and its activity is relatively insensitive to inhibition by the diadenosine nucleotide Ap4A. During the course of development, the varying kinase activity level reflects differential expression of the c-src gene product. The kinase activity is low during early development, increases dramatically during organogenesis, and decreases thereafter to the level found in adult animals. The kinase activity displays an organ specificity, with brain showing the highest activity in embryos as well as in adults. Muscle, however, shows high activities during organogenesis, but no or barely detectable activity in adult animals. Our data suggest, therefore, that the c-src gene product plays more of a role in differentiation than in proliferation processes during embryogenesis, and that it may act as a pleiotropic effector.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D002023 Bufo bufo A species of the true toads, Bufonidae, widely distributed in the United States and Europe. Toad, Common,Common Toad,Common Toads,Toads, Common
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.

Related Publications

M Schartl, and A Barnekow
January 1994, Current topics in developmental biology,
M Schartl, and A Barnekow
February 2005, Seminars in cell & developmental biology,
M Schartl, and A Barnekow
May 2009, The Journal of biological chemistry,
M Schartl, and A Barnekow
May 1984, Molecular and cellular biology,
M Schartl, and A Barnekow
August 1988, Cancer letters,
M Schartl, and A Barnekow
August 2007, Developmental biology,
M Schartl, and A Barnekow
January 1986, Princess Takamatsu symposia,
M Schartl, and A Barnekow
January 1993, Annales de genetique,
M Schartl, and A Barnekow
January 2000, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!