Immunoelectron-microscopic study on the fine structure of substance-P-containing fibers in the taste buds of the rat. 1984

H Yamasaki, and Y Kubota, and H Takagi, and M Tohyama

The fine structure of substance-P-like immunoreactive [SPI] fibers in the taste buds of the circumvallate papillae of the rat tongue was investigated by means of electron microscopy using the unlabeled antibody-enzyme method. Outside the epithelium, SPI and non-SPI fibers are surrounded by the cytoplasm of Schwann cells. When the SPI fibers enter the epithelium, they immediately lose this cytoplasmic sheath and begin to traverse the taste buds. Though passing through the taste buds, no profiles suggesting clear synaptic contact between SPI fibers and underlying cells are identified. SPI terminals are filled with small synaptic vesicles and contain a few mitochondria. No SPI-positive structures are found in nerve endings that make synaptic contact with type III cells, the gustatory receptor cells.

UI MeSH Term Description Entries
D007120 Immunochemistry Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013373 Substance P An eleven-amino acid neurotransmitter that appears in both the central and peripheral nervous systems. It is involved in transmission of PAIN, causes rapid contractions of the gastrointestinal smooth muscle, and modulates inflammatory and immune responses. Euler-Gaddum Substance P,Hypothalamic Substance P,SP(1-11),Euler Gaddum Substance P,Substance P, Euler-Gaddum,Substance P, Hypothalamic
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic
D013650 Taste Buds Small sensory organs which contain gustatory receptor cells, basal cells, and supporting cells. Taste buds in humans are found in the epithelia of the tongue, palate, and pharynx. They are innervated by the CHORDA TYMPANI NERVE (a branch of the facial nerve) and the GLOSSOPHARYNGEAL NERVE. Bud, Taste,Buds, Taste,Taste Bud
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

H Yamasaki, and Y Kubota, and H Takagi, and M Tohyama
March 1986, Brain research,
H Yamasaki, and Y Kubota, and H Takagi, and M Tohyama
March 1975, Archivum histologicum Japonicum = Nihon soshikigaku kiroku,
H Yamasaki, and Y Kubota, and H Takagi, and M Tohyama
August 1985, The Anatomical record,
H Yamasaki, and Y Kubota, and H Takagi, and M Tohyama
October 1984, Biulleten' eksperimental'noi biologii i meditsiny,
H Yamasaki, and Y Kubota, and H Takagi, and M Tohyama
June 1984, [Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society,
H Yamasaki, and Y Kubota, and H Takagi, and M Tohyama
June 1956, The Annals of otology, rhinology, and laryngology,
H Yamasaki, and Y Kubota, and H Takagi, and M Tohyama
January 1998, European journal of oral sciences,
H Yamasaki, and Y Kubota, and H Takagi, and M Tohyama
April 1994, The Anatomical record,
Copied contents to your clipboard!