Bifurcation of subcortical afferents to visual areas 17, 18, and 19 in the cat cortex. 1984

J Bullier, and H Kennedy, and W Salinger

We have examined the pattern of axon bifurcation in the thalamic and claustral afferents to visual areas 17, 18, and 19 in the adult cat neocortex. This was achieved by injecting two fluorescent retrograde tracers, fast blue and diamidino yellow, in retinotopically corresponding regions of two of these three cortical areas. The pattern of single- and double-labelled cells was then examined in subcortical structures and the presence of double-labelled cells was interpreted as indicating that these neurons send bifurcating axons to the two injected areas. The size of the cortical region surrounding the injection site where each fluorescent dye is taken up was studied by making side-by-side injections of the two tracers in area 17 and examining the size and the separation of the two groups of labelled cells in the lateral geniculate nucleus (LGN). From these experiments we conclude that the uptake region is smaller than 1 mm and is included in the region of dense coloring surrounding the track of the injection needle. Injections were made in cortical regions which were in retinotopic correspondence as determined by electrophysiological recording. The double-labelled neurons were always found in the zone of overlap of the two populations of colored cells and no double-labelled neurons were found when there was no overlap between these populations. This indicates that the bifurcating axons send branches to strictly retinotopically corresponding regions in the two cortical areas. After injections in areas 18 and 19, numerous double-labelled cells were observed in laminae C of the LGN, in the medial interlaminar nucleus (MIN), the posterior nucleus (PN), and the lateral part of the lateral posterior nucleus (LP), in the retinorecipient zone of the pulvinar (RRZ-Pul), the intralaminar nuclei (ILN), and the claustrum. The proportions of double-labelled cells with respect to the total number of labelled neurons were computed in the region of overlap of the two populations of labelled cells. These percentages ranged between 5 and 20% and were highest in the C laminae of the LGN, the intralaminar nuclei, and the claustrum. After injection of areas 17 and 18, similar proportions of double-labelled cells were observed in the same structures, as well as in the A laminae of the LGN. Here again, the intralaminar nuclei and the claustrum tended to have slightly higher (20-30%) proportions of double-labelled cells. When the nonadjacent areas 17 and 19 were injected, doubled-labelled neurons were also observed in all these structures, except the A laminae of the LGN.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000578 Amidines Derivatives of oxoacids RnE(
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001479 Basal Ganglia Large subcortical nuclear masses derived from the telencephalon and located in the basal regions of the cerebral hemispheres. Basal Nuclei,Ganglia, Basal,Basal Nuclear Complex,Ganglion, Basal,Basal Nuclear Complices,Nuclear Complex, Basal,Nuclei, Basal
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings
D013787 Thalamic Nuclei Several groups of nuclei in the thalamus that serve as the major relay centers for sensory impulses in the brain. Nuclei, Thalamic
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

J Bullier, and H Kennedy, and W Salinger
February 1975, Brain research,
J Bullier, and H Kennedy, and W Salinger
October 1980, Journal of neurophysiology,
J Bullier, and H Kennedy, and W Salinger
January 1992, Progress in brain research,
J Bullier, and H Kennedy, and W Salinger
February 1990, Visual neuroscience,
J Bullier, and H Kennedy, and W Salinger
February 1981, The Journal of physiology,
J Bullier, and H Kennedy, and W Salinger
March 1996, The Journal of comparative neurology,
J Bullier, and H Kennedy, and W Salinger
November 1991, Journal of neurophysiology,
J Bullier, and H Kennedy, and W Salinger
May 1990, The Journal of comparative neurology,
Copied contents to your clipboard!