Left ventricular end-systolic wall stress-velocity of fiber shortening relation: a load-independent index of myocardial contractility. 1984

S D Colan, and K M Borow, and A Neumann

The velocity of circumferential fiber shortening (Vcf) is an index of myocardial performance which, although sensitive to contractile state, has limited usefulness because of its dependence on left ventricular loading conditions. This study investigated the degree and velocity of left ventricular fiber shortening as it relates to wall stress in an attempt to develop an index of contractility that is independent of preload and heart rate while incorporating afterload. Studies were performed in 78 normal subjects using M-mode echocardiography, phonocardiography and indirect carotid pulse tracings under baseline conditions. In addition, studies were performed on 25 subjects during afterload augmentation with methoxamine, 8 subjects before and during afterload challenge after increased preload with dextran and 7 subjects with enhanced left ventricular contractility with dobutamine. The relation of end-systolic stress to the velocity of fiber shortening and to the rate-corrected velocity of shortening (corrected by normalization to an RR interval of 1) was inversely linear with correlation coefficients of -0.72 and -0.84, respectively. Alterations in afterload, preload or a combination of the two did not significantly affect the end-systolic wall stress/rate-corrected velocity of shortening relation, whereas during inotropic stimulation, the values were higher, with 94% of the data points above the normal range. Age did not appear to affect the range of normal values for this index. In contrast, the end-systolic wall stress/fractional shortening relation was not independent of preload status, responding in a manner similar to that seen with a positive inotropic intervention. Thus, the velocity of circumferential fiber shortening normalized for heart rate is inversely related to end-systolic wall stress in a linear fashion. Accurate quantitation can be performed by noninvasive means and a range of normal values determined. This index is a sensitive measure of contractile state that is independent of preload, normalized for heart rate and incorporates afterload. In contrast, the end-systolic wall stress/fractional shortening relation is dependent on end-diastolic fiber length in the range of physiologically relevant changes in preload.

UI MeSH Term Description Entries
D008297 Male Males
D008729 Methoxamine An alpha-1 adrenergic agonist that causes prolonged peripheral VASOCONSTRICTION. Methoxamedrin,Methoxamine Hydrochloride,Metoxamine Wellcome,Vasoxin,Vasoxine,Vasoxyl,Vasylox,Hydrochloride, Methoxamine,Wellcome, Metoxamine
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D010701 Phonocardiography Graphic registration of the heart sounds picked up as vibrations and transformed by a piezoelectric crystal microphone into a varying electrical output according to the stresses imposed by the sound waves. The electrical output is amplified by a stethograph amplifier and recorded by a device incorporated into the electrocardiograph or by a multichannel recording machine. Phonocardiographies
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004280 Dobutamine A catecholamine derivative with specificity for BETA-1 ADRENERGIC RECEPTORS. It is commonly used as a cardiotonic agent after CARDIAC SURGERY and during DOBUTAMINE STRESS ECHOCARDIOGRAPHY. Dobucor,Dobuject,Dobutamin Fresenius,Dobutamin Hexal,Dobutamin Solvay,Dobutamin-ratiopharm,Dobutamina Inibsa,Dobutamina Rovi,Dobutamine (+)-Isomer,Dobutamine Hydrobromide,Dobutamine Hydrochloride,Dobutamine Lactobionate,Dobutamine Phosphate (1:1) Salt, (-)-Isomer,Dobutamine Tartrate,Dobutamine Tartrate (1:1), (R-(R*,R*))-Isomer,Dobutamine Tartrate (1:1), (S-(R*,R*))-Isomer,Dobutamine, (-)-Isomer,Dobutamine, Phosphate (1:1) Salt (+)-Isomer,Dobutrex,Lilly 81929,Oxiken,Posiject,Dobutamin ratiopharm,Hydrobromide, Dobutamine,Hydrochloride, Dobutamine,Lactobionate, Dobutamine,Tartrate, Dobutamine

Related Publications

S D Colan, and K M Borow, and A Neumann
October 1994, Journal of the American College of Cardiology,
S D Colan, and K M Borow, and A Neumann
September 1971, Circulation,
Copied contents to your clipboard!