Identification of transfer RNA suppressors in Escherichia coli. III. Ochre suppressors of lysine tRNA. 1984

M Yoshimura, and M Kimura, and M Ohno, and H Inokuchi, and H Ozeki

Transducing phages of lambda carrying suppressors, lysT (Su+ beta), supG and and supL, were isolated in vivo. Upon infection with each of these phages, the production of tRNALys and tRNAVal1 was markedly enhanced. Fingerprint analysis of these tRNAs revealed that they consisted of normal tRNALys, mutant tRNALys and tRNAVal1 in equimolar ratios. The mutant tRNALys carried a single-base alteration at the anticodon, from 5'-UUU-3' to 5'-UUA-3', which makes it an ochre suppressor. DNA sequence analysis of the entire transducing fragment (730 base-pairs) of lambda pSu+ beta revealed that three tRNA genes are tightly clustered within a transcription unit in the following order; i.e. promoter-(48 base-pairs)-wild-type tRNALys-(132 base-pairs)-tRNAVal1-(2 base-pairs)-Su+ beta tRNALys-. In wild-type bacteria there are two identical tRNALys genes in one operon. Although we have shown that in Su+ beta it is the distal tRNALys that has been mutated to the ochre suppressor by a single base change at the anticodon (U36 to A36), we have not determined which of the two genes bears the supG or the supL mutation. The sequences following both tRNALys genes are highly homologous: both are about 100 base-pairs long and both terminate with an 18 base-pair sequence homologous to the last 18 bases of each tRNA. The sequences of tRNALys and tRNAVal1 are also very similar. Thus, including the 3'-portions of these tRNA genes, the 18 base-pair sequence is more or less periodically repeated five times in the DNA sequence.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004586 Electrophoresis An electrochemical process in which macromolecules or colloidal particles with a net electric charge migrate in a solution under the influence of an electric current. Electrophoreses
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012346 RNA, Transfer, Amino Acyl Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process. Amino Acyl tRNA,Transfer RNA, Amino Acyl,tRNA-Amino Acyl,Amino Acyl T RNA,Acyl tRNA, Amino,Acyl, tRNA-Amino,tRNA Amino Acyl,tRNA, Amino Acyl

Related Publications

M Yoshimura, and M Kimura, and M Ohno, and H Inokuchi, and H Ozeki
February 1968, Genetical research,
M Yoshimura, and M Kimura, and M Ohno, and H Inokuchi, and H Ozeki
August 1979, Journal of molecular biology,
M Yoshimura, and M Kimura, and M Ohno, and H Inokuchi, and H Ozeki
March 1972, Journal of bacteriology,
M Yoshimura, and M Kimura, and M Ohno, and H Inokuchi, and H Ozeki
August 1984, Journal of molecular biology,
M Yoshimura, and M Kimura, and M Ohno, and H Inokuchi, and H Ozeki
June 1980, European journal of biochemistry,
M Yoshimura, and M Kimura, and M Ohno, and H Inokuchi, and H Ozeki
December 1982, Gene,
M Yoshimura, and M Kimura, and M Ohno, and H Inokuchi, and H Ozeki
December 1977, Journal of molecular biology,
M Yoshimura, and M Kimura, and M Ohno, and H Inokuchi, and H Ozeki
August 1979, Journal of molecular biology,
M Yoshimura, and M Kimura, and M Ohno, and H Inokuchi, and H Ozeki
January 1970, Molecular & general genetics : MGG,
M Yoshimura, and M Kimura, and M Ohno, and H Inokuchi, and H Ozeki
January 1993, Nucleic acids symposium series,
Copied contents to your clipboard!