Quantitative analysis of electrical properties of dendritic spines. 1984

M Kawato, and T Hamaguchi, and F Murakami, and N Tsukahara

Several suggestions have been made with regard to the functional significance of dendritic spines in connection with synaptic plasticity. We have shown that for a constant synaptic current, when the synaptic resistance is large compared to the spine-stem resistance, a morphological change in the spine does not produce a marked change in the postsynaptic potential (PSP). When the synaptic resistance is comparable to the spine-stem impedance a morphological change in the spine can induce changes in the synaptic current and the PSP due to the so-called nonlinear effect to the synapse (Kawato and Tsukahara, 1983, 1984). Consequently, in a study of the electrical properties of dendritic spines the input impedance of the parent dendrite, the spinestalk conductance and the conductance change associated with synaptic activity must be considered. We quantitatively estimated all three factors. By comparing electrophysiological data with morphological data, we estimated the synaptic conductance which causes corticorubral EPSP. Its maximum amplitude was 43 nS with a time-to-peak value of 0.3 ms. With this value, the effects of the spine were examined using an improved algorithm based on that of Butz and Cowan (1974). It uses a three-dimensional morphology of the rubrospinal (RS) neurons, which was reconstructed from serial sections containing HRP-filled RS cells. As the spine shortens, the amplitude of the EPSP becomes considerably larger, but its time-to-peak value does not markedly change. Moreover, if unitary EPSP in the RS cell is produced by the activation of several synaptic terminals a morphological change of the spine has a smaller effect on the EPSPs.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

M Kawato, and T Hamaguchi, and F Murakami, and N Tsukahara
November 2023, Biophysical journal,
M Kawato, and T Hamaguchi, and F Murakami, and N Tsukahara
August 1983, Journal of theoretical biology,
M Kawato, and T Hamaguchi, and F Murakami, and N Tsukahara
August 1984, Biophysical journal,
M Kawato, and T Hamaguchi, and F Murakami, and N Tsukahara
January 2012, PloS one,
M Kawato, and T Hamaguchi, and F Murakami, and N Tsukahara
July 2013, Annual review of neuroscience,
M Kawato, and T Hamaguchi, and F Murakami, and N Tsukahara
July 1983, Proceedings of the Royal Society of London. Series B, Biological sciences,
M Kawato, and T Hamaguchi, and F Murakami, and N Tsukahara
August 2012, BMC bioinformatics,
M Kawato, and T Hamaguchi, and F Murakami, and N Tsukahara
February 2018, Scientific reports,
M Kawato, and T Hamaguchi, and F Murakami, and N Tsukahara
February 2004, Trends in neurosciences,
M Kawato, and T Hamaguchi, and F Murakami, and N Tsukahara
November 2018, Scientific reports,
Copied contents to your clipboard!