Mesencephalic projections to the facial nucleus in the cat. An autoradiographical tracing study. 1984

G Holstege, and J Tan, and J van Ham, and A Bos

In 33 cats the projections of different parts of the mesencephalon to the facial nucleus were studied with the aid of the autoradiographical tracing method. The results indicate the existence of many different mesencephalo-facial pathways. The dorsomedial facial subnucleus, containing motoneurons innervating ear muscles, receives afferents from 4 different mesencephalic areas: a, the most rostral mesencephalic reticular formation; b, the nucleus of Darkschewitsch and/or the ventral part of the rostral PAG; c, the interstitial nucleus of Cajal and/or the mesencephalic tegmentum dorsomedial to the red nucleus. These areas project bilaterally by way of an ipsilateral medial tegmental pathway. The medial part of the deep tectum. This area projects bilaterally by way of the tecto-spinal tract. The lateral mesencephalic tegmentum close to the parabigeminal nucleus. This area projects mainly contralaterally by way of a separate contralateral lateral tegmental fiber bundle. The mesencephalic tegmentum just dorsolateral to the red nucleus and perhaps from the dorsolateral red nucleus itself. This area projects contralaterally by way of the rubrospinal tract. The intermediate facial subnucleus containing motoneurons innervating the muscle around the eye, receives afferents from two different mesencephalic areas: The dorsal part of the rostral as well as caudal red nucleus (but not from its caudal pole) and from the dorsally adjoining mesencephalic tegmentum including the area of the nucleus of Darkschewitsch and the interstitial nucleus of Cajal. These areas project contralaterally by way of the contralateral rubrospinal tract. The nucleus of the optic tract and/or the olivary pretectal nucleus. This area projects contralaterally by way of a contralateral medial tegmental pathway. The lateral and ventrolateral facial subnuclei containing motoneurons innervating the muscles around the mouth receive afferents from two different mesencephalic areas: The lateral part of the deep tectal layers. This area projects contralaterally by way of the tecto-spinal tract. The nucleus raphe dorsalis and perhaps the nucleus centralis superior. This area projects by way of the lateral tegmentum of caudal pons and medulla.

UI MeSH Term Description Entries
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D005154 Facial Nerve The 7th cranial nerve. The facial nerve has two parts, the larger motor root which may be called the facial nerve proper, and the smaller intermediate or sensory root. Together they provide efferent innervation to the muscles of facial expression and to the lacrimal and SALIVARY GLANDS, and convey afferent information for TASTE from the anterior two-thirds of the TONGUE and for TOUCH from the EXTERNAL EAR. Cranial Nerve VII,Marginal Mandibular Branch,Marginal Mandibular Nerve,Seventh Cranial Nerve,Nerve VII,Nerve of Wrisberg,Nervus Facialis,Nervus Intermedius,Nervus Intermedius of Wrisberg,Cranial Nerve VIIs,Cranial Nerve, Seventh,Facial Nerves,Mandibular Nerve, Marginal,Mandibular Nerves, Marginal,Marginal Mandibular Nerves,Nerve VIIs,Nerve, Facial,Nerve, Marginal Mandibular,Nerve, Seventh Cranial,Nerves, Marginal Mandibular,Nervus Faciali,Seventh Cranial Nerves,Wrisberg Nerve,Wrisberg Nervus Intermedius
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic

Related Publications

G Holstege, and J Tan, and J van Ham, and A Bos
January 1995, The Anatomical record,
G Holstege, and J Tan, and J van Ham, and A Bos
September 1985, Brain research,
G Holstege, and J Tan, and J van Ham, and A Bos
October 1992, The Journal of comparative neurology,
G Holstege, and J Tan, and J van Ham, and A Bos
June 2002, Experimental brain research,
G Holstege, and J Tan, and J van Ham, and A Bos
February 1986, The Laryngoscope,
G Holstege, and J Tan, and J van Ham, and A Bos
September 1987, The Journal of comparative neurology,
Copied contents to your clipboard!