Nucleotide sequence of complementary DNA and derived amino acid sequence of murine complement protein C3. 1984

G H Fey, and A Lundwall, and R A Wetsel, and B F Tack, and M H de Bruijn, and H Domdey

The nucleotide sequences coding for murine complement component C3 have been determined from a cloned genomic DNA fragment and several overlapping cloned complementary DNA fragments. The amino acid sequence of the protein was deduced. The mature beta and alpha subunits contain 642 and 993 amino acids respectively. Including a 24 amino acid signal peptide and four arginines in the beta-alpha transition region, which are probably not contained in the mature protein, the unglycosylated single chain precursor protein preproC3 would have a molecular mass of 186 484 Da and consist of 1663 amino acid residues. The C3 messenger RNA would be composed of a 56 +/- 2 nucleotide long 5' non-translated region, 4992 nucleotides of coding sequence, and a 3' non-translated region of 39 nucleotides, excluding the poly A tail. The beta chain contains only three cysteine residues, the alpha chain 24, ten of which are clustered in the carboxy terminal stretch of 175 amino acids. Two potential carbohydrate attachment sites are predicted for the alpha chain, none for the beta chain. From a comparison with human C3 cDNA sequence (of which over 80% has been determined) an extensive overall sequence homology was observed. Human and murine preproC3 would be of very similar length and share several noteworthy properties: the same order of the subunits in the precursor, the same basic residue multiplet in the beta-alpha transition region, and a glutamine residue in the thioester region. The equivalent position of the known factor I cleavage sites in human C3 alpha could be located in the murine C3 alpha chain and the size and sequence of the resulting peptide were deduced. A comparison of the amino acid sequences of murine C3 and human alpha 2-macroglobulin is given. Several areas of strong sequence homology are observed, and we conclude that the two genes must have evolved from a common ancestor.

UI MeSH Term Description Entries
D003176 Complement C3 A glycoprotein that is central in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C3 can be cleaved into COMPLEMENT C3A and COMPLEMENT C3B, spontaneously at low level or by C3 CONVERTASE at high level. The smaller fragment C3a is an ANAPHYLATOXIN and mediator of local inflammatory process. The larger fragment C3b binds with C3 convertase to form C5 convertase. C3 Complement,C3 Precursor,Complement 3,Complement C3 Precursor,Complement Component 3,Precursor-Complement 3,Pro-C3,Pro-Complement 3,C3 Precursor, Complement,C3, Complement,Complement, C3,Component 3, Complement,Precursor Complement 3,Precursor, C3,Precursor, Complement C3,Pro C3,Pro Complement 3
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000511 alpha-Macroglobulins Glycoproteins with a molecular weight of approximately 620,000 to 680,000. Precipitation by electrophoresis is in the alpha region. They include alpha 1-macroglobulins and alpha 2-macroglobulins. These proteins exhibit trypsin-, chymotrypsin-, thrombin-, and plasmin-binding activity and function as hormonal transporters. Slow alpha 2-Macroglobulins,alpha 2-Acute Phase Globulins,alpha-Macrofetoproteins,45S RNP,Acute-Phase alpha 1-Protein,Slow alpha 2-Globulin,alpha 1-Acute Phase Globulin,alpha 1-Acute Phase Protein,alpha 1-Macroglobulin,alpha 2-Acute Phase Globulin,alpha-Macrofetoprotein,Acute Phase alpha 1 Protein,RNP, 45S,Slow alpha 2 Globulin,Slow alpha 2 Macroglobulins,alpha 1 Acute Phase Globulin,alpha 1 Acute Phase Protein,alpha 1 Macroglobulin,alpha 1-Protein, Acute-Phase,alpha 2 Acute Phase Globulin,alpha 2 Acute Phase Globulins,alpha 2-Globulin, Slow,alpha 2-Macroglobulins, Slow,alpha Macrofetoprotein,alpha Macrofetoproteins,alpha Macroglobulins
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

G H Fey, and A Lundwall, and R A Wetsel, and B F Tack, and M H de Bruijn, and H Domdey
April 1990, Nucleic acids research,
G H Fey, and A Lundwall, and R A Wetsel, and B F Tack, and M H de Bruijn, and H Domdey
June 1986, Immunological investigations,
G H Fey, and A Lundwall, and R A Wetsel, and B F Tack, and M H de Bruijn, and H Domdey
October 1986, Biochemistry,
G H Fey, and A Lundwall, and R A Wetsel, and B F Tack, and M H de Bruijn, and H Domdey
December 1984, Proceedings of the National Academy of Sciences of the United States of America,
G H Fey, and A Lundwall, and R A Wetsel, and B F Tack, and M H de Bruijn, and H Domdey
January 1983, Annals of the New York Academy of Sciences,
G H Fey, and A Lundwall, and R A Wetsel, and B F Tack, and M H de Bruijn, and H Domdey
November 1987, Journal of bacteriology,
G H Fey, and A Lundwall, and R A Wetsel, and B F Tack, and M H de Bruijn, and H Domdey
January 1987, The Journal of clinical investigation,
G H Fey, and A Lundwall, and R A Wetsel, and B F Tack, and M H de Bruijn, and H Domdey
June 2002, Biology of reproduction,
G H Fey, and A Lundwall, and R A Wetsel, and B F Tack, and M H de Bruijn, and H Domdey
January 1985, Biochemistry,
G H Fey, and A Lundwall, and R A Wetsel, and B F Tack, and M H de Bruijn, and H Domdey
December 1991, Gene,
Copied contents to your clipboard!