Immunogenicity of tick-borne encephalitis virus glycoprotein fragments: epitope-specific analysis of the antibody response. 1984

F X Heinz, and W Tuma, and F Guirakhoo, and R Berger, and C Kunz

After digestion with trypsin, alpha-chymotrypsin, or chemical cleavage using CNBr, fragments of the tick-borne encephalitis (TBE) virus glycoprotein were isolated which retained their reactivity with neutralizing monoclonal antibodies defining a denaturation-resistant antigenic domain. Upon immunization of mice, these fragments induced antibodies reactive with the immunizing peptide, the denatured glycoprotein and the native glycoprotein as a constituent of the whole virus. The immune sera revealed the same properties as the monoclonal antibodies that were used to select the fragments for immunization: neutralizing activity; haemagglutination-inhibiting activity; blocking of the binding of antibodies used for selection; enhancement of the binding of other monoclonal antibodies defining a denaturation-sensitive antigenic domain. It was shown that the natural immune response against certain functionally important, denaturation-resistant immunogenic domains on the native protein can be closely mimicked by immunization with defined protein fragments. Antigenic sites present on these fragments may therefore represent essential constituents of a synthetic vaccine. The fine specificities of antibody populations in anti-peptide or anti-protein immune sera were analysed on the basis of single antigenic determinants by blocking assays using radiolabelled monoclonal antibodies that define eight distinct epitopes on the TBE virus glycoprotein. Quantitative differences in the blocking of certain monoclonal antibodies were also observed between human convalescent sera. The establishment of such blocking profiles using a panel of well-characterized monoclonal antibodies may represent a general method for dissecting the specificities of antibody populations present in polyclonal immune sera and could allow investigations on determinant-restricted differences of immune responses and its possible implications for the course of the disease.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme
D003488 Cyanogen Bromide Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes. Bromide, Cyanogen
D004669 Encephalitis Viruses, Tick-Borne A subgroup of the genus FLAVIVIRUS that causes encephalitis and hemorrhagic fevers and is found in eastern and western Europe and the former Soviet Union. It is transmitted by TICKS and there is an associated milk-borne transmission from viremic cattle, goats, and sheep. Hemorrhagic Fever Virus, Omsk,Kyasanur Forest disease virus,Langat virus,Louping ill virus,Omsk hemorrhagic fever virus,Powassan virus,Al-Khurma Hemorrhagic Fever Virus,Al-Khurma virus,Al-Khurma virus (ALKV),Alkhurma Hemorrhagic Fever Virus,Alkhurma virus,Alkhurma virus (ALKV),Encephalitis Virus, Tick-Borne,Tick-Borne Encephalitis Virus,Tick-Borne Encephalitis Viruses,Viruses, Tick-Borne Encephalitis,Al Khurma Hemorrhagic Fever Virus,Al Khurma virus,Al Khurma virus (ALKV),Encephalitis Virus, Tick Borne,Encephalitis Viruses, Tick Borne,Louping ill viruses,Tick Borne Encephalitis Virus,Tick Borne Encephalitis Viruses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody
D000936 Antigen-Antibody Complex The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES. Immune Complex,Antigen-Antibody Complexes,Immune Complexes,Antigen Antibody Complex,Antigen Antibody Complexes,Complex, Antigen-Antibody,Complex, Immune,Complexes, Antigen-Antibody,Complexes, Immune

Related Publications

F X Heinz, and W Tuma, and F Guirakhoo, and R Berger, and C Kunz
January 2001, Bioorganicheskaia khimiia,
F X Heinz, and W Tuma, and F Guirakhoo, and R Berger, and C Kunz
May 2023, Viruses,
F X Heinz, and W Tuma, and F Guirakhoo, and R Berger, and C Kunz
January 1980, Intervirology,
F X Heinz, and W Tuma, and F Guirakhoo, and R Berger, and C Kunz
August 1985, The Journal of general virology,
F X Heinz, and W Tuma, and F Guirakhoo, and R Berger, and C Kunz
May 2022, Journal of medical microbiology,
F X Heinz, and W Tuma, and F Guirakhoo, and R Berger, and C Kunz
September 1982, Infection and immunity,
F X Heinz, and W Tuma, and F Guirakhoo, and R Berger, and C Kunz
September 1994, Clinical and diagnostic laboratory immunology,
F X Heinz, and W Tuma, and F Guirakhoo, and R Berger, and C Kunz
January 1989, Voprosy virusologii,
Copied contents to your clipboard!