Human U1 RNA genes contain an unusually sensitive nuclease S1 cleavage site within the conserved 3' flanking region. 1984

H Htun, and E Lund, and J E Dahlberg

We find that the cloned DNAs of human U1 small nuclear RNA genes contain two nuclease S1-sensitive sites, one about 1.8 kilobases downstream of the U1 RNA coding region and the other around 0.3 kilobase upstream. The downstream site is unusually sensitive to the nuclease, being cleaved in both linear and negatively supercoiled DNAs. The extent of cleavage at this site is enhanced at lower pH and reduced concentrations of NaCl; the effects of salt are more apparent on linear than supercoiled DNAs. The nuclease S1 sensitivity of this downstream site is dependent on the presence of the sequence (dC-dT)n X (dA-dG)n, where n = 15-25. (One gene with n = 5 is resistant to nuclease S1 cleavage in this region.) In contrast, the nuclease S1 site upstream of the coding region is cleaved only when the DNA is supercoiled. This site also has a homopyrimidine X homopurine bias in the DNA strands, but the sequence is less regular. In the course of these studies, we detected several discrepancies between our restriction maps of some U1 RNA genes and those published by others. Our maps demonstrate that all seven cloned human U1 RNA genes are very similar in sequence for as much as 2.3 kilobases downstream of the U1 RNA coding region.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012342 RNA, Small Nuclear Short chains of RNA (100-300 nucleotides long) that are abundant in the nucleus and usually complexed with proteins in snRNPs (RIBONUCLEOPROTEINS, SMALL NUCLEAR). Many function in the processing of messenger RNA precursors. Others, the snoRNAs (RNA, SMALL NUCLEOLAR), are involved with the processing of ribosomal RNA precursors. Low Molecular Weight Nuclear RNA,Small Nuclear RNA,snRNA,Chromatin-Associated RNA,Small Molecular Weight RNA,Chromatin Associated RNA,RNA, Chromatin-Associated

Related Publications

H Htun, and E Lund, and J E Dahlberg
June 1989, Biochimica et biophysica acta,
H Htun, and E Lund, and J E Dahlberg
March 1984, Journal of molecular biology,
H Htun, and E Lund, and J E Dahlberg
December 1990, Shi yan sheng wu xue bao,
H Htun, and E Lund, and J E Dahlberg
August 1997, Science in China. Series C, Life sciences,
H Htun, and E Lund, and J E Dahlberg
March 1984, Proceedings of the National Academy of Sciences of the United States of America,
H Htun, and E Lund, and J E Dahlberg
June 1985, Proceedings of the National Academy of Sciences of the United States of America,
H Htun, and E Lund, and J E Dahlberg
December 1991, Gene,
Copied contents to your clipboard!