RNA required for import of precursor proteins into mitochondria. 1984

F A Firgaira, and J P Hendrick, and F Kalousek, and J P Kraus, and L E Rosenberg

A cytoplasmic RNA moiety is necessary for posttranslational uptake of nuclear-encoded mammalian proteins destined for the mitochondrial matrix. Post-translational addition of ribonuclease to a reticulocyte lysate-programmed cell-free translation mixture inhibited subsequent import of six different mitochondrial matrix enzyme precursors into rat liver mitochondria. The required RNA is highly protected, as indicated by the high concentrations of ribonuclease necessary to produce this inhibition. The dependence of the inhibitory effect on temperature, duration of exposure to ribonuclease, and availability of divalent cations is characteristic of the nuclease susceptibility of ribonucleoproteins. The ribonuclease-sensitive component was found in a 400-kilodalton fraction which contains the mitochondrial protein precursors.

UI MeSH Term Description Entries
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009954 Ornithine Carbamoyltransferase A urea cycle enzyme that catalyzes the formation of orthophosphate and L-citrulline (CITRULLINE) from CARBAMOYL PHOSPHATE and L-ornithine (ORNITHINE). Deficiency of this enzyme may be transmitted as an X-linked trait. EC 2.1.3.3. Ornithine Transcarbamylase,Ornithine Carbamylphosphate Transferase,Carbamoyltransferase, Ornithine,Carbamylphosphate Transferase, Ornithine,Transcarbamylase, Ornithine,Transferase, Ornithine Carbamylphosphate
D011498 Protein Precursors Precursors, Protein
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

F A Firgaira, and J P Hendrick, and F Kalousek, and J P Kraus, and L E Rosenberg
January 2006, Methods in molecular biology (Clifton, N.J.),
F A Firgaira, and J P Hendrick, and F Kalousek, and J P Kraus, and L E Rosenberg
January 1991, Methods in cell biology,
F A Firgaira, and J P Hendrick, and F Kalousek, and J P Kraus, and L E Rosenberg
April 1999, The Journal of biological chemistry,
F A Firgaira, and J P Hendrick, and F Kalousek, and J P Kraus, and L E Rosenberg
June 1990, The Journal of biological chemistry,
F A Firgaira, and J P Hendrick, and F Kalousek, and J P Kraus, and L E Rosenberg
January 1996, Molekuliarnaia biologiia,
F A Firgaira, and J P Hendrick, and F Kalousek, and J P Kraus, and L E Rosenberg
December 1999, FEBS letters,
F A Firgaira, and J P Hendrick, and F Kalousek, and J P Kraus, and L E Rosenberg
August 1994, Trends in cell biology,
F A Firgaira, and J P Hendrick, and F Kalousek, and J P Kraus, and L E Rosenberg
October 1989, Biochemical Society transactions,
F A Firgaira, and J P Hendrick, and F Kalousek, and J P Kraus, and L E Rosenberg
January 1981, Methods in cell biology,
F A Firgaira, and J P Hendrick, and F Kalousek, and J P Kraus, and L E Rosenberg
January 1988, Progress in clinical and biological research,
Copied contents to your clipboard!