Evolutionary aspects of accuracy of phenylalanyl-tRNA synthetase. A comparative study with enzymes from Escherichia coli, Saccharomyces cerevisiae, Neurospora crassa, and turkey liver using phenylalanine analogues. 1983

H J Gabius, and F von der Haar, and F Cramer

The phenylalanyl-tRNA synthetases from Escherichia coli, Saccharomyces cerevisiae, Neurospora crassa, and turkey liver activate a number of phenylalanine analogues (tyrosine, leucine, methionine, p-fluorophenylalanine, beta-phenylserine, beta-thien-2-ylalanine, 2-amino-4-methylhex-4-enoic acid, mimosine, N-benzyl-L- or N-benzyl-D-phenylalanine, and ochratoxin A), as demonstrated by Km and kcat of the ATP/PPi pyrophosphate exchange. Upon complexation with tRNA, the enzyme-tRNAPhe complexes show a significantly increased initial discrimination of these amino acid analogues expressed in higher Km and lower kcat values, as determined by amino-acylation of tRNAPhe-C-C-A(3'NH2). The overall accuracy is further enhanced by a second discrimination, a proofreading step. The strategies employed by the enzymes with respect to accuracy differ. Better initial discrimination in the aminoacylation and less elaborated proofreading for the E. coli enzyme can be compared to a more efficient proofreading by other synthetases. In this way the comparatively poor initial amino acid recognition in the case of the S. cerevisiae and N. crassa enzymes is balanced. The extent of initial discrimination is therefore inversely coupled to the hydrolytic capacity of the proofreading. A striking difference can be noted for the proofreading mechanisms. Whereas the enzymes from E. coli, S. cerevisiae, and N. crassa follow the pathway of posttransfer proofreading, namely, enzymatic hydrolysis of the misaminoacylated tRNA, the turkey liver enzyme uses tRNA-dependent pretransfer proofreading in the case of natural amino acids. In spite of the same subunit structure and similar molecular weight, the phenylalanyl-tRNA synthetases from a prokaryotic and lower and higher eukaryotic organisms show obvious mechanistic differences in their strategy to achieve the necessary fidelity.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009491 Neurospora A genus of ascomycetous fungi, family Sordariaceae, order SORDARIALES, comprising bread molds. They are capable of converting tryptophan to nicotinic acid and are used extensively in genetic and enzyme research. (Dorland, 27th ed) Neurosporas
D009492 Neurospora crassa A species of ascomycetous fungi of the family Sordariaceae, order SORDARIALES, much used in biochemical, genetic, and physiologic studies. Chrysonilia crassa
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D010652 Phenylalanine-tRNA Ligase An enzyme that activates phenylalanine with its specific transfer RNA. EC 6.1.1.20. Phenylalanyl T RNA Synthetase,Phe-tRNA Ligase,Phenylalanyl-tRNA Synthetase,Ligase, Phe-tRNA,Ligase, Phenylalanine-tRNA,Phe tRNA Ligase,Phenylalanine tRNA Ligase,Phenylalanyl tRNA Synthetase,Synthetase, Phenylalanyl-tRNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

H J Gabius, and F von der Haar, and F Cramer
May 1972, Biochimica et biophysica acta,
H J Gabius, and F von der Haar, and F Cramer
November 1974, Biochemistry,
H J Gabius, and F von der Haar, and F Cramer
September 1991, FEBS letters,
H J Gabius, and F von der Haar, and F Cramer
March 2002, Protein expression and purification,
H J Gabius, and F von der Haar, and F Cramer
May 1988, Archives of biochemistry and biophysics,
H J Gabius, and F von der Haar, and F Cramer
December 1971, European journal of biochemistry,
H J Gabius, and F von der Haar, and F Cramer
February 1977, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
H J Gabius, and F von der Haar, and F Cramer
December 2002, Journal of the American Chemical Society,
H J Gabius, and F von der Haar, and F Cramer
October 1991, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!