Role for the J-F intercistronic region of bacteriophages phi X174 and G4 in stability of mRNA. 1983

M N Hayashi, and M Hayashi, and U R Müller

A hairpin-like secondary structure in the intercistronic region between genes J and F of bacteriophages, phi X174 and G4 has been postulated to act as a transcription termination signal. We analyzed the in vivo transcripts of both phages and mutants derived from them with modifications of this hairpin structure. The phi X174 mutants appeared to fall into two groups with respect to the stability of two mRNA species. Class 1 mutants showed an mRNA profile very similar to the parental strain, whereas class 2 mutants lacked two major mRNA species normally terminated near the J-F region. The G4 mutants behaved like class 2 mutants of phi X174. Analysis of the stability of phi X174 mRNA revealed that messages specific for the genes upstream of the hairpin turn over more rapidly in class 2 mutants than in class 1 mutants. In class 1 mutants, the mRNA decay rates are similar but not identical to those of the wild-type strain. These data suggest a role for the nucleotide sequence within the J-F intercistronic region in mRNA degradation. They further imply that transcription termination occurs downstream from this site.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010584 Bacteriophage phi X 174 The type species of the genus MICROVIRUS. A prototype of the small virulent DNA coliphages, it is composed of a single strand of supercoiled circular DNA, which on infection, is converted to a double-stranded replicative form by a host enzyme. Coliphage phi X 174,Enterobacteria phage phi X 174,Phage phi X 174,phi X 174 Phage,Phage phi X174
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

M N Hayashi, and M Hayashi, and U R Müller
August 1979, Journal of virology,
M N Hayashi, and M Hayashi, and U R Müller
July 1980, Journal of molecular biology,
M N Hayashi, and M Hayashi, and U R Müller
May 1984, Journal of virology,
M N Hayashi, and M Hayashi, and U R Müller
January 1985, Journal of virology,
M N Hayashi, and M Hayashi, and U R Müller
September 1979, Journal of molecular biology,
M N Hayashi, and M Hayashi, and U R Müller
March 1972, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!