[Modification of an enzymic system of Ca2+ transport in sarcoplasmic reticulum during lipid peroxidation. In vivo damages in the development of pathological changes]. 1983

V E Kagan, and Iu V Arkhipenko, and F Z Meerson, and Iu P Kozlov

The role of lipid peroxidation (LPO) in the damages of the enzymic system of Ca2+ transport in sarcoplasmic reticulum (SR) membranes of skeletal and cardiac muscles under conditions of vitamin E deficiency, ischemia and limb reoxygenation as well as in emotional-pain stress was investigated. It was shown that these processes are associated with activation of endogenous LPO in SR membranes "in vivo" and with simultaneous inhibition of Ca2+ transport, (i. e. decrease of the Ca2+/ATP ratio) and inactivation of Ca-ATPase. The degree of damage of the Ca2+ transport system was correlated with the concentration of LPO products accumulated in SR membranes "in vivo and during LPO induction by the Fe2+ + ascorbate system 'in vitro". Injection of natural and synthetic free radical scavengers (e. g. 4-methyl-2.6-ditretbutylphenol, alpha-tocopherol) to experimental animals resulted in practically complete suppression of LPO activation "in vivo" and in partial protection of the Ca2+-transporting capacity of SR membranes. A comparison of experimental results allowed to estimate the role of LPO in SR damage under pathological conditions. Model experiments with "contraction-relaxation" cycles including isolated components of muscle fibers (SR fragments and myofibrils) demonstrated that LPO induction in SR membranes by the Fe2+ + ascorbate system results in complete elimination of the relaxation step in myofibrils due to the loss of the SR affinity to decrease the concentration of Ca2+ in the incubation medium. This effect can be removed by free radical scavengers. The role of LPO in pathological changes of muscle contractility is discussed.

UI MeSH Term Description Entries
D007511 Ischemia A hypoperfusion of the BLOOD through an organ or tissue caused by a PATHOLOGIC CONSTRICTION or obstruction of its BLOOD VESSELS, or an absence of BLOOD CIRCULATION. Ischemias
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

V E Kagan, and Iu V Arkhipenko, and F Z Meerson, and Iu P Kozlov
January 1986, Ukrainskii biokhimicheskii zhurnal (1978),
V E Kagan, and Iu V Arkhipenko, and F Z Meerson, and Iu P Kozlov
November 1986, Biulleten' eksperimental'noi biologii i meditsiny,
V E Kagan, and Iu V Arkhipenko, and F Z Meerson, and Iu P Kozlov
January 1980, Doklady Akademii nauk SSSR,
V E Kagan, and Iu V Arkhipenko, and F Z Meerson, and Iu P Kozlov
September 1988, Biulleten' eksperimental'noi biologii i meditsiny,
V E Kagan, and Iu V Arkhipenko, and F Z Meerson, and Iu P Kozlov
May 1983, Biochimica et biophysica acta,
V E Kagan, and Iu V Arkhipenko, and F Z Meerson, and Iu P Kozlov
January 1982, Annals of the New York Academy of Sciences,
V E Kagan, and Iu V Arkhipenko, and F Z Meerson, and Iu P Kozlov
November 1981, Biulleten' eksperimental'noi biologii i meditsiny,
V E Kagan, and Iu V Arkhipenko, and F Z Meerson, and Iu P Kozlov
January 1997, Biochimica et biophysica acta,
V E Kagan, and Iu V Arkhipenko, and F Z Meerson, and Iu P Kozlov
January 1977, Advances in experimental medicine and biology,
Copied contents to your clipboard!