Identification and function of the high affinity binding sites for Ca2+ on the surface of platelets. 1984

L F Brass, and S J Shattil

Extracellular Ca2+ is required for platelet aggregation and secretion in response to ADP or epinephrine. Recently, we reported that the platelet surface contains two classes of high affinity binding sites for extracellular Ca2+. To identify these sites and clarify their role in platelet function, we have now (a) studied platelets congenitally deficient in surface membrane glycoproteins and (b) examined the effect of removing surface-bound Ca2+ on platelet responses to ADP and epinephrine. Unstimulated normal platelets contained 86,000 Ca2+-binding sites/platelet with a dissociation constant (Kd) of 9 nM and 389,000 sites with a Kd of 400 nM. In contrast, thrombasthenic platelets, which lack glycoproteins IIb and IIIa, exhibited a 92% reduction in the number of higher affinity Ca2+-binding sites and a 63% reduction in the number of lower affinity sites. Bernard-Soulier platelets, which lack glycoprotein Ib, were not deficient in Ca2+-binding sites. After stimulation with ADP, both normal and thrombasthenic platelets developed approximately 138,000 new Ca2+-binding sites/platelet (Kd = 400 nM), while the larger Bernard-Soulier platelets developed 216,000 new sites. These data suggest that IIb and IIIa represent the major Ca2+-binding glycoproteins on unstimulated platelets, while neither these glycoproteins nor Ib represent the new Ca2+-binding sites on stimulated platelets. Removal of Ca2+ from the platelet surface inhibited platelet function. Despite the presence of 1 mM Mg2+, ADP- and epinephrine-induced aggregation and [14C]serotonin release were markedly decreased at free Ca2+ concentrations less than 7 nM, a value similar to the Kd of the higher affinity Ca2+-binding sites. Moreover, gadolinium, a lanthanide that competed for these Ca2+-binding sites, also inhibited aggregation and serotonin release. These studies demonstrate, therefore, that the binding of extracellular Ca2+ to glycoproteins IIb/IIIa on unstimulated platelets or to additional membrane proteins on stimulated platelets is necessary for maximal platelet responses to ADP and epinephrine. Thus, the requirement for extracellular Ca2+ during platelet activation by these agonists may actually represent a requirement for surface-bound Ca2+.

UI MeSH Term Description Entries
D010974 Platelet Aggregation The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS. Aggregation, Platelet
D010980 Platelet Membrane Glycoproteins Surface glycoproteins on platelets which have a key role in hemostasis and thrombosis such as platelet adhesion and aggregation. Many of these are receptors. PM-GP,Platelet Glycoprotein,Platelet Membrane Glycoprotein,PM-GPs,Platelet Glycoproteins,Glycoprotein, Platelet,Glycoprotein, Platelet Membrane,Glycoproteins, Platelet,Glycoproteins, Platelet Membrane,Membrane Glycoprotein, Platelet,Membrane Glycoproteins, Platelet,PM GP
D001791 Blood Platelet Disorders Disorders caused by abnormalities in platelet count or function. Thrombocytopathy,Blood Platelet Disorder,Disorder, Blood Platelet,Disorders, Blood Platelet,Platelet Disorder, Blood,Platelet Disorders, Blood,Thrombocytopathies
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine

Related Publications

L F Brass, and S J Shattil
October 1979, European journal of pharmacology,
L F Brass, and S J Shattil
January 1978, Scandinavian journal of immunology,
L F Brass, and S J Shattil
June 1974, Biochemical and biophysical research communications,
L F Brass, and S J Shattil
August 1998, The Journal of biological chemistry,
L F Brass, and S J Shattil
December 1985, Biochimica et biophysica acta,
L F Brass, and S J Shattil
January 1996, The Journal of experimental biology,
Copied contents to your clipboard!