Structure of the vanadate-induced crystals of sarcoplasmic reticulum Ca2+-ATPase. 1984

K Taylor, and L Dux, and A Martonosi

The projected structure of the vanadate-induced crystalline aggregates of Ca2+-ATPase molecules in isolated sarcoplasmic reticulum membranes has been determined. The molecules form tubular crystals with an oblique surface lattice having cell dimensions a = 65.9 A, b = 114.4 A and gamma = 77.9 degrees. The space group is P2. The crystalline tubules are formed through lateral aggregation of chains made up of dimers of Ca2+-ATPase molecules.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D014638 Vanadates Oxyvanadium ions in various states of oxidation. They act primarily as ion transport inhibitors due to their inhibition of Na(+)-, K(+)-, and Ca(+)-ATPase transport systems. They also have insulin-like action, positive inotropic action on cardiac ventricular muscle, and other metabolic effects. Decavanadate,Metavanadate,Orthovanadate,Oxyvanadium,Vanadyl,Monovanadate,Sodium Vanadate,Vanadate,Vanadate, Sodium
D014639 Vanadium A metallic element with the atomic symbol V, atomic number 23, and atomic weight 50.94. It is used in the manufacture of vanadium steel. Prolonged exposure can lead to chronic intoxication caused by absorption usually via the lungs. Vanadium-51,Vanadium 51
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

K Taylor, and L Dux, and A Martonosi
December 1986, Bioscience reports,
K Taylor, and L Dux, and A Martonosi
August 1979, Biochemical and biophysical research communications,
K Taylor, and L Dux, and A Martonosi
April 1990, Biochimica et biophysica acta,
K Taylor, and L Dux, and A Martonosi
January 2003, Acta biochimica Polonica,
K Taylor, and L Dux, and A Martonosi
November 1986, Biochimica et biophysica acta,
K Taylor, and L Dux, and A Martonosi
February 1982, Molecular and cellular biochemistry,
K Taylor, and L Dux, and A Martonosi
April 1985, FEBS letters,
K Taylor, and L Dux, and A Martonosi
January 1984, The Journal of biological chemistry,
K Taylor, and L Dux, and A Martonosi
August 1983, The Journal of biological chemistry,
Copied contents to your clipboard!