Repression is relieved before attenuation in the trp operon of Escherichia coli as tryptophan starvation becomes increasingly severe. 1984

C Yanofsky, and R L Kelley, and V Horn

Expression of the tryptophan operon of Escherichia coli is regulated over about a 500- to 600-fold range by the combined action of repression and attenuation. Repression regulates transcription initiation in response to variation in the intracellular concentration of tryptophan. Attenuation regulates transcription termination at a site in the leader region of the operon in response to changes in the extent of charging of tRNATrp. We measured repression independently of attenuation to ascertain whether these regulatory mechanisms were used differentially by the bacterium as the severity of tryptophan starvation was increased. We found that repression regulated transcription of the operon over the range from growth with excess tryptophan to growth under moderate tryptophan starvation. By contrast, attenuation (termination control) was not relaxed until tryptophan starvation was in the moderate-to-severe range. Thus, attenuation and repression were used to regulate transcription in response to different degrees of tryptophan deprivation. Consistent with this conclusion is the observation that when tryptophan starvation was sufficient to relieve repression 50 to 60%, 65% of the tRNATrp of the bacterium was charged. These findings provide a possible explanation for the existence of only two tryptophan codons in the coding region for the trp leader peptide of Enterobacteriaceae.

UI MeSH Term Description Entries
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan

Related Publications

C Yanofsky, and R L Kelley, and V Horn
July 1969, Journal of bacteriology,
C Yanofsky, and R L Kelley, and V Horn
November 1990, Journal of molecular biology,
C Yanofsky, and R L Kelley, and V Horn
January 1984, Molecular & general genetics : MGG,
C Yanofsky, and R L Kelley, and V Horn
April 1970, Biochimica et biophysica acta,
C Yanofsky, and R L Kelley, and V Horn
April 1982, Journal of molecular biology,
C Yanofsky, and R L Kelley, and V Horn
June 1973, Journal of general microbiology,
C Yanofsky, and R L Kelley, and V Horn
July 1973, Proceedings of the National Academy of Sciences of the United States of America,
C Yanofsky, and R L Kelley, and V Horn
December 1983, Journal of bacteriology,
C Yanofsky, and R L Kelley, and V Horn
November 1979, Proceedings of the National Academy of Sciences of the United States of America,
C Yanofsky, and R L Kelley, and V Horn
August 1982, The Journal of biological chemistry,
Copied contents to your clipboard!