Control of the function of substrate-bound C4b-C3b by the complement receptor Cr1. 1984

M E Medof, and V Nussenzweig

The complement fragments C3b and C4b are the main ligands for the membrane receptor CR1. We showed elsewhere that CR1 functions as an essential cofactor for the factor I-mediated enzymatic breakdown of membrane-bound C3b (*C3b) into C3c and * C3dg . One of the main findings of the present paper is that CR1 also promotes the degradation of bound C4b (*C4b) into C4c and *C4d. On a weight basis, the cofactor activity of CR1 in the cleavage of *C4b present on the cell intermediate EAC14 is 10(3)-fold greater than that of the serum cofactor C4-binding protein ( C4bp ). An additional finding is that the effect of CR1 on either *C3b or *C4b is modulated by the presence of the other ligand in its vicinity; that is, *C4b degradation by CR1 plus I is enhanced by neighboring *C3b and vice versa. For example, upon uptake of optimal amounts of *C3b onto EAC142 and the assembly of the C3-convertase EAC1423 , the activity of CR1 in generating C4c is enhanced 5-10 times further. Conversely, when the number of *C3b molecules on EAC1423 is relatively small (or when EAC1423 has been converted by I plus H into EAC1423i ), the presence of neighboring *C4b enhances the conversion of *C3b (or *iC3b) into C3c plus * C3dg . The enhancing effect of *C3b on the cleavage of *C4b by I is observed only if the cofactor of this reaction is CR1. Indeed, the activity of I or I plus C4bp on *C4b is significantly inhibited when *C3b is fixed and the main product of the reaction is * iC4b . Taken together, these findings suggest that degradation of *C4b will be more effective when enough C3b molecules are fixed nearby, thus facilitating the interaction of *C4b*3b clusters with CR1-bearing cells, and that under physiological conditions, *C4b activity can be efficiently controlled by CR1.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011951 Receptors, Complement Molecules on the surface of some B-lymphocytes and macrophages, that recognize and combine with the C3b, C3d, C1q, and C4b components of complement. Complement Receptors,Complement Receptor,Complement Receptor Type 1,Receptor, Complement
D002021 Buffers A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer. Buffer
D003166 Complement Activating Enzymes Enzymes that activate one or more COMPLEMENT PROTEINS in the complement system leading to the formation of the COMPLEMENT MEMBRANE ATTACK COMPLEX, an important response in host defense. They are enzymes in the various COMPLEMENT ACTIVATION pathways. Activating Enzymes, Complement,Enzymes, Complement Activating
D003179 Complement C3b The larger fragment generated from the cleavage of COMPLEMENT C3 by C3 CONVERTASE. It is a constituent of the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb), and COMPLEMENT C5 CONVERTASES in both the classical (C4b2a3b) and the alternative (C3bBb3b) pathway. C3b participates in IMMUNE ADHERENCE REACTION and enhances PHAGOCYTOSIS. It can be inactivated (iC3b) or cleaved by various proteases to yield fragments such as COMPLEMENT C3C; COMPLEMENT C3D; C3e; C3f; and C3g. C3b Complement,C3bi,Complement 3b,Complement Component 3b,Inactivated C3b,iC3b,C3b, Complement,C3b, Inactivated,Complement, C3b,Component 3b, Complement
D003181 Complement C4 A glycoprotein that is important in the activation of CLASSICAL COMPLEMENT PATHWAY. C4 is cleaved by the activated COMPLEMENT C1S into COMPLEMENT C4A and COMPLEMENT C4B. C4 Complement,C4 Complement Component,Complement 4,Complement C4, Precursor,Complement Component 4,Pro-C4,Pro-complement 4,C4, Complement,Complement Component, C4,Complement, C4,Component 4, Complement,Component, C4 Complement,Pro C4,Pro complement 4
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M E Medof, and V Nussenzweig
February 1981, Journal of immunology (Baltimore, Md. : 1950),
M E Medof, and V Nussenzweig
April 1987, Proceedings of the National Academy of Sciences of the United States of America,
M E Medof, and V Nussenzweig
February 1986, Journal of immunology (Baltimore, Md. : 1950),
M E Medof, and V Nussenzweig
June 1986, Molecular immunology,
M E Medof, and V Nussenzweig
March 1994, Journal of immunology (Baltimore, Md. : 1950),
M E Medof, and V Nussenzweig
March 1994, The Journal of biological chemistry,
M E Medof, and V Nussenzweig
March 1985, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!