Effects of 2-nicotinamidoethyl nitrate (nicorandil; SG-75) and its derivative on smooth muscle cells of the canine mesenteric artery. 1984

T Inoue, and Y Kanmura, and K Fujisawa, and T Itoh, and H Kuriyama

To clarify the mechanism of vasodilating actions of nicotinamidoethyl nitrate (nicorandil; SG-75) in relation to the chemical structure, we studied the effects of SG-75 and its derivatives [nitrate containing structure; 3,5-bis([2'- nitroxyethyl ] aminocarbonyl )pyridine (SG-114); nicotinamide derivatives: N-(2-hydroxyethyl)nicotinamide (SG-86) and N-(2- nicotinyloxyethyl )-nicotinamide; (SG-103)] on the electrical and mechanical properties of smooth muscle cells of the canine mesenteric artery. SG-75 significantly and SG-114 slightly hyperpolarized the membrane but SG-86 or SG-103 did not. The excitatory junction potential and spike potential evoked by perivascular nerve or direct muscle stimulation were markedly inhibited by SG-75 due to hyperpolarization of the membrane. SG-114 slightly inhibited but SG-86 or SG-103 did not inhibit the excitatory junction potential or spike potential. The K-induced contraction was inhibited by SG-75 (below 39.2 mM) or without hyperpolarization (over 39.2 mM) of the membrane, but SG-114 inhibited the contraction with no hyperpolarization. In concentrations over 39.2 mM K0, SG-114 inhibited the contraction more potently than did SG-75. On the other hand, the norepinephrine-induced contraction was inhibited by SG-75 or SG-114 to the same extent, due to additional hyperpolarization of the membrane, in the case of SG-75. Both agents inhibited but SG-86 or SG-103 did not inhibit the norepinephrine-induced contraction in the Ca-free 2 mM ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid containing solution. After the complete depletion of the stored Ca, application of Ca in the presence of SG-75 or SG-114 enabled estimation of the reduction in the amount of Ca stored in the cell, determined by the amplitude of the subsequently produced caffeine-induced contraction in Ca-free ethylene glycol bis(beta-aminoethyl ether)N,N'- tetraacetic acid containing solution. The effects of SG-75 or SG-114 on the norepinephrine-induced contraction in Ca-free solution also indicated a reduction in the Ca stored in the cell. It would appear that SG-75 hyperpolarizes the membrane due to the SG-75 moiety and not to the nitrate residue alone. The relaxation of the tissue induced by SG-75 or SG-114 is due to nitrate action, as observed in the case of nitroglycerin. SG-114 possesses a stronger potency with regard to relaxation of the tissue; however, in vivo, SG-75 may have a more potent vasodilating action than SG-114, as the former inhibits neuromuscular transmission mechanisms.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008638 Mesenteric Arteries Arteries which arise from the abdominal aorta and distribute to most of the intestines. Arteries, Mesenteric,Artery, Mesenteric,Mesenteric Artery
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009536 Niacinamide An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and PELLAGRA. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Nicotinamide,Vitamin B 3,Vitamin PP,3-Pyridinecarboxamide,Enduramide,Nicobion,Nicotinsäureamid Jenapharm,Papulex,Vitamin B3,3 Pyridinecarboxamide,B 3, Vitamin,B3, Vitamin,Jenapharm, Nicotinsäureamid
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50

Related Publications

T Inoue, and Y Kanmura, and K Fujisawa, and T Itoh, and H Kuriyama
July 1979, Japanese heart journal,
T Inoue, and Y Kanmura, and K Fujisawa, and T Itoh, and H Kuriyama
March 1983, Japanese heart journal,
T Inoue, and Y Kanmura, and K Fujisawa, and T Itoh, and H Kuriyama
November 1983, British journal of pharmacology,
T Inoue, and Y Kanmura, and K Fujisawa, and T Itoh, and H Kuriyama
August 1984, The Journal of pharmacology and experimental therapeutics,
T Inoue, and Y Kanmura, and K Fujisawa, and T Itoh, and H Kuriyama
May 1982, The Journal of pharmacology and experimental therapeutics,
T Inoue, and Y Kanmura, and K Fujisawa, and T Itoh, and H Kuriyama
January 1980, Clinical and experimental pharmacology & physiology,
T Inoue, and Y Kanmura, and K Fujisawa, and T Itoh, and H Kuriyama
July 1981, The Journal of pharmacology and experimental therapeutics,
T Inoue, and Y Kanmura, and K Fujisawa, and T Itoh, and H Kuriyama
January 1979, Clinical and experimental pharmacology & physiology,
T Inoue, and Y Kanmura, and K Fujisawa, and T Itoh, and H Kuriyama
October 1979, Japanese journal of pharmacology,
T Inoue, and Y Kanmura, and K Fujisawa, and T Itoh, and H Kuriyama
January 1981, Clinical and experimental pharmacology & physiology,
Copied contents to your clipboard!