Relation between Ca2+-ATPase and endogenous calmodulin of human erythrocyte membranes. 1984

R Klinger, and R Wetzker, and I Wenz, and U Dinjus, and R Reissmann, and H Frunder

Short incubation of erythrocyte membranes with oleic acid releases Ca2+-independently bound endogenous calmodulin together with a minor fraction of membrane-associated proteins without destruction of the membranes. The released endogenous calmodulin is similar if not identical to cytosolic calmodulin reversibly bound to ghosts in a Ca2+-dependent manner. The release of endogenous calmodulin proceeds without affecting the activity of Ca2+-ATPase when ghosts are incubated with oleic acid in the presence of Ca2+ plus ATP and thereafter freed from oleic acid by washings with serum albumin. Kinetic parameters of Ca2+-ATPase of ghosts with and without endogenous calmodulin are identical as are amounts of exogenous calmodulin bound to these ghosts. Thus, endogenous calmodulin does not function as an essential part of Ca2+-ATPase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009829 Oleic Acids A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon. Octadecenoic Acids,Acids, Octadecenoic,Acids, Oleic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D019301 Oleic Acid An unsaturated fatty acid that is the most widely distributed and abundant fatty acid in nature. It is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. (Stedman, 26th ed) 9-Octadecenoic Acid,Oleate,cis-9-Octadecenoic Acid,9 Octadecenoic Acid,cis 9 Octadecenoic Acid

Related Publications

R Klinger, and R Wetzker, and I Wenz, and U Dinjus, and R Reissmann, and H Frunder
August 1981, Archives of biochemistry and biophysics,
R Klinger, and R Wetzker, and I Wenz, and U Dinjus, and R Reissmann, and H Frunder
March 1981, Endocrinology,
R Klinger, and R Wetzker, and I Wenz, and U Dinjus, and R Reissmann, and H Frunder
March 1981, Nature,
R Klinger, and R Wetzker, and I Wenz, and U Dinjus, and R Reissmann, and H Frunder
September 1982, Biochimica et biophysica acta,
R Klinger, and R Wetzker, and I Wenz, and U Dinjus, and R Reissmann, and H Frunder
October 1979, The Journal of biological chemistry,
R Klinger, and R Wetzker, and I Wenz, and U Dinjus, and R Reissmann, and H Frunder
December 1980, Biochimica et biophysica acta,
R Klinger, and R Wetzker, and I Wenz, and U Dinjus, and R Reissmann, and H Frunder
May 1980, The Biochemical journal,
R Klinger, and R Wetzker, and I Wenz, and U Dinjus, and R Reissmann, and H Frunder
November 1979, Archives of biochemistry and biophysics,
R Klinger, and R Wetzker, and I Wenz, and U Dinjus, and R Reissmann, and H Frunder
May 1983, The Journal of biological chemistry,
R Klinger, and R Wetzker, and I Wenz, and U Dinjus, and R Reissmann, and H Frunder
October 1978, Biochemical and biophysical research communications,
Copied contents to your clipboard!