Different conformational states of the purified Ca2+-ATPase of the erythrocyte plasma membrane revealed by controlled trypsin proteolysis. 1984

G Benaim, and M Zurini, and E Carafoli

The purified Ca2+-pumping ATPase of the erythrocyte membrane has been exposed to trypsin at 37 degrees C, in the presence of different effectors of its activity. The control proteolytic pattern is characterized by a number of transient and of limit polypeptides (Zurini, M., Krebs, J., Penniston, J. T., and Carafoli, E. (1984) J. Biol. Chem. 259, 618-627). The effectors influence the pattern in the Mr region 90,000-76,000, which contains the calmodulin binding domain and the active site of the enzyme. In this region, polypeptides of 90, 85, 81, and 76 kDa are clearly visible in the controls. 1) Calmodulin plus Ca2+ induces the faster disappearance of the 90-kDa product and the relative accumulation of the 85-kDa with respect to the 81-kDa polypeptide. 2) Vanadate plus Mg2+ also accelerates the disappearance of the 90-kDa product. However, they induce the relative accumulation of the 81-kDa polypeptide. 3) Linoleic acid, which stimulates the activity of the enzyme to the same levels obtained with calmodulin, greatly accelerates the rate of trypsin proteolysis, causing the virtual disappearance of all polypeptides in the 90-76-kDa region. 4) The 81-kDa polypeptide has maximal ATPase activity and is insensitive to calmodulin; the 85-kDa polypeptide has lower ATPase activity and binds calmodulin, but is not stimulated (or is stimulated only negligibly) by the activator.

UI MeSH Term Description Entries
D008041 Linoleic Acids Eighteen-carbon essential fatty acids that contain two double bonds. Acids, Linoleic
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin
D014638 Vanadates Oxyvanadium ions in various states of oxidation. They act primarily as ion transport inhibitors due to their inhibition of Na(+)-, K(+)-, and Ca(+)-ATPase transport systems. They also have insulin-like action, positive inotropic action on cardiac ventricular muscle, and other metabolic effects. Decavanadate,Metavanadate,Orthovanadate,Oxyvanadium,Vanadyl,Monovanadate,Sodium Vanadate,Vanadate,Vanadate, Sodium
D014639 Vanadium A metallic element with the atomic symbol V, atomic number 23, and atomic weight 50.94. It is used in the manufacture of vanadium steel. Prolonged exposure can lead to chronic intoxication caused by absorption usually via the lungs. Vanadium-51,Vanadium 51

Related Publications

G Benaim, and M Zurini, and E Carafoli
February 1989, FEBS letters,
G Benaim, and M Zurini, and E Carafoli
April 1992, Biophysical chemistry,
G Benaim, and M Zurini, and E Carafoli
January 1986, Biochimica et biophysica acta,
G Benaim, and M Zurini, and E Carafoli
November 1988, Archives of biochemistry and biophysics,
G Benaim, and M Zurini, and E Carafoli
May 1990, Archives of biochemistry and biophysics,
G Benaim, and M Zurini, and E Carafoli
June 1979, The Journal of membrane biology,
G Benaim, and M Zurini, and E Carafoli
October 1991, Molecular and cellular biochemistry,
Copied contents to your clipboard!