Nonselective motor innervation of intrafusal fibers in muscle spindles of the rat. 1984

J M Walro, and J Kucera

Distributions of motor axons to different types of intrafusal fiber were reconstructed from serial 1-micron thick transverse sections of six poles of muscle spindle in the rat soleus. Motor axons innervated (dynamic) bag1 fibers, or (static) bag2 fibers in conjunction with chain fibers. However, approximately forty percent of axons that supplied the spindles synapsed on both bag1 and bag2 or bag1 and chain fibers. The significance of this co-innervation of dynamic and static intrafusal fibers is discussed relative to the general organization and function of mammalian spindles.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009047 Motor Neurons, Gamma Motor neurons which activate the contractile regions of intrafusal SKELETAL MUSCLE FIBERS, thus adjusting the sensitivity of the MUSCLE SPINDLES to stretch. Gamma motor neurons may be "static" or "dynamic" according to which aspect of responsiveness (or which fiber types) they regulate. The alpha and gamma motor neurons are often activated together (alpha gamma coactivation) which allows the spindles to contribute to the control of movement trajectories despite changes in muscle length. Neurons, Fusimotor,Neurons, Gamma Motor,Gamma Motorneurons,Motor Neurons, Gamma-Efferent,Fusimotor Neuron,Fusimotor Neurons,Gamma Motor Neuron,Gamma Motor Neurons,Gamma Motorneuron,Gamma-Efferent Motor Neuron,Gamma-Efferent Motor Neurons,Motor Neuron, Gamma,Motor Neuron, Gamma-Efferent,Motor Neurons, Gamma Efferent,Motorneuron, Gamma,Motorneurons, Gamma,Neuron, Fusimotor,Neuron, Gamma Motor,Neuron, Gamma-Efferent Motor,Neurons, Gamma-Efferent Motor
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009470 Muscle Spindles Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS. Muscle Stretch Receptors,Neuromuscular Spindles,Receptors, Stretch, Muscle,Stretch Receptors, Muscle,Muscle Spindle,Muscle Stretch Receptor,Neuromuscular Spindle,Receptor, Muscle Stretch,Receptors, Muscle Stretch,Spindle, Muscle,Spindle, Neuromuscular,Spindles, Muscle,Spindles, Neuromuscular,Stretch Receptor, Muscle
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002802 Cholinesterases Acylcholineacylhydrolase,Cholase,Cholinesterase
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

J M Walro, and J Kucera
January 1984, Cell and tissue research,
J M Walro, and J Kucera
November 1978, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
J M Walro, and J Kucera
March 1987, Journal of morphology,
J M Walro, and J Kucera
December 1992, Comparative biochemistry and physiology. Comparative physiology,
Copied contents to your clipboard!