The relationship between hnRNA+-poly(A) and mRNA+-poly (A) in non-dividing human lymphocytes. Evidence for distinct synthetic pathways for mRNA precursor- and nonprecursor-hnRNA. 1978

S L Berger, and H L Cooper

The processing of hnRNA+-poly(A) to mRNA+-poly(A) has been studied in resting lymphocytes from human peripheral blood. In pulse-chase experiments, two types of hnRNA+-poly(A) have been distinguished: the first is labeled predominantly with exogenous radioactive precursors supplied during the pulse, and the second incorporates primarily scavenged labeled precursors made available during a chase incubation. When the disappearance of both types of hnRNA+-poly(A) was quantitatively compared with the appearance of stable and labile mRNA+-poly(A), only 10% of the anticipated cytoplasmic material was actually obtained. Statistically, 90% of the poly(A)-bearing hnRNA molecules processed were degraded. The two types of hnRNA+-poly(A) were found to be functionally different. Pulse-labeled material was processed to poly(A)-bearing mRNA; "chase-labeled" molecules did not leave the nucleus and never served as precursors for cytoplasmic mRNA. The data fit a model in which there are distinct pathways for mRNA precursor- and nonprecursor-hnRNA+-poly(A).

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009694 Nucleic Acid Precursors Use for nucleic acid precursors in general or for which there is no specific heading. Acid Precursors, Nucleic,Precursors, Nucleic Acid
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

S L Berger, and H L Cooper
January 1976, Progress in nucleic acid research and molecular biology,
S L Berger, and H L Cooper
January 1993, Biochemical and biophysical research communications,
S L Berger, and H L Cooper
December 2006, Molecular cell,
S L Berger, and H L Cooper
March 2018, Current biology : CB,
S L Berger, and H L Cooper
January 1979, Nucleic acids research,
S L Berger, and H L Cooper
September 1979, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!