Long-chain acyl-coenzyme A synthetase from rat brain microsomes. Kinetic studies using [1-14C]docosahexaenoic acid substrate. 1984

T S Reddy, and H Sprecher, and N G Bazan

The activation of docosahexaenoic acid by rat brain microsomes was studied using an assay method based on the extraction of unreacted [1-14C]docosahexaenoic acid and the insolubility of [1-14C]docosahexaenoyl-CoA in heptane. This reaction showed a requirement for ATP, CoA, and MgCl2 and exhibited optimal activity at pH 8.0 in the presence of dithiothreitol and when incubated at 45 degrees C. The apparent Km values for ATP (185 microM), CoA (4.88 microM), MgCl2 (555 microM) and [1-14C]docosahexaenoic acid (26 microM) were determined. The presence of bovine serum albumin or Triton X-100 in the incubation medium caused a significant decrease in the Km and Vm values for [1-14C]docosahexaenoic acid. The enzyme was labile at 45 degrees C (t1/2:3.3 min) and 37 degrees C (t1/2:26.5 min) and lost 36% of its activity after freezing and thawing. The transition temperature (Tc) obtained from Arrhenius plot was 27 degrees C with the activation energies of 74 kJ/mol between 0 degrees C and 27 degrees C and 30 kJ/mol between 27 degrees C and 45 degrees C. [1-14C]Palmitic acid activation in rat brain and liver microsomes showed apparent Km values of 25 microM and 29 microM respectively, with V values of 13 and 46 nmol X min-1 X mg protein-1. The presence of Triton X-100 (0.05%) in the incubation medium enhanced the V value of the liver enzyme fourfold without affecting the Km value. Brain palmitoyl-CoA synthetase, on the other hand, showed a decreased Km value in the presence of Triton X-100 with unchanged V. The Tc obtained were 25 degrees C and 28 degrees C for brain and liver enzyme with an apparent activation energy of 109 and 24 kJ/mol below and above Tc for brain enzyme and 86 and 3.3 kJ/mol for liver enzyme. The similar results obtained for the activation of docosahexaenoate and palmitate in brain microsomes suggest the possible existence of a single long-chain acyl-CoA synthetase. The differences observed in the activation of palmitate between brain and liver microsomes may be due to organ differences. Fatty acid competition studies showed a greater inhibition of labeled docosahexaenoic and palmitic acid activation in the presence of unlabeled unsaturated fatty acids. The Ki values for unlabeled docosahexaenoate and arachidonate were 38 microM and 19 microM respectively for the activation of [1-14C]docosahexaenoate. In contrast, the competition of unlabeled saturated fatty acids for activation of labeled docosahexaenoate is much less than that for activation of labeled palmitate.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008670 Metals Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed) Metal
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003066 Coenzyme A Ligases Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1. Acyl CoA Synthetase,Acyl CoA Synthetases,Acyl Coenzyme A Synthetase,Acyl Coenzyme A Synthetases,Coenzyme A Ligase,Coenzyme A Synthetase,Coenzyme A Synthetases,Acid-Thiol Ligases,Co A Ligases,A Ligase, Coenzyme,A Synthetase, Coenzyme,Acid Thiol Ligases,CoA Synthetase, Acyl,CoA Synthetases, Acyl,Ligase, Coenzyme A,Ligases, Acid-Thiol,Ligases, Co A,Ligases, Coenzyme A,Synthetase, Acyl CoA,Synthetase, Coenzyme A,Synthetases, Acyl CoA,Synthetases, Coenzyme A
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents

Related Publications

T S Reddy, and H Sprecher, and N G Bazan
July 1972, The Journal of biological chemistry,
T S Reddy, and H Sprecher, and N G Bazan
November 1972, The Journal of biological chemistry,
T S Reddy, and H Sprecher, and N G Bazan
January 1987, Journal of neuroscience research,
T S Reddy, and H Sprecher, and N G Bazan
September 1985, Journal of biochemistry,
T S Reddy, and H Sprecher, and N G Bazan
October 1983, Archives of biochemistry and biophysics,
T S Reddy, and H Sprecher, and N G Bazan
November 1993, Biochemistry and molecular biology international,
T S Reddy, and H Sprecher, and N G Bazan
March 1985, Neurochemical research,
T S Reddy, and H Sprecher, and N G Bazan
July 1979, European journal of biochemistry,
T S Reddy, and H Sprecher, and N G Bazan
March 2006, Journal of lipid research,
Copied contents to your clipboard!