Interaction of isozymes of myosin subfragment 1 with actin: effect of ionic strength and nucleotide. 1984

J M Chalovich, and L A Stein, and L E Greene, and E Eisenberg

Myosin subfragment 1 (S-1) can be fractionated into two isozymes, (A1)S-1 containing alkali light chain 1 and (A2)S-1 containing alkali light chain 2. The predominant difference in the behavior of the two isozymes of S-1 is that, at low ionic strength, the actin concentration required for half-maximal ATPase activity is considerably lower for (A1)S-1 than for (A2)S-1; that is, the apparent binding constant KATPase for (A1)S-1 is greater than KATPase for (A2)S-1 [Weeds, A.G., & Taylor, R.S. (1975) Nature (London) 257, 54-56]. This difference disappears at high ionic strength [Wagner, P. D., Slater, C. S., Pope, B., & Weeds, A.G. (1979) Eur. J. Biochem. 99, 385-394]. In the present study we investigated whether the difference in the KATPase values of (A1)S-1 and (A2)S-1 is due to a difference in the actual affinity of these S-1 isozymes for actin. Binding was measured in the presence of ATP and AMP-PNP and in the absence of nucleotide at varied ionic strengths. We found that at low ionic strength where KATPase is several times stronger for (A1)S-1 than for (A2)S-1, the binding of (A1)S-1 to actin is correspondingly stronger than that of (A2)S-1 irrespective of the nucleotide present. Furthermore, as the ionic strength is increased, just as the difference between the KATPase values for (A1)S-1 and (A2)S-1 disappears so too does the difference in the affinity of the two isozymes for actin.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin

Related Publications

J M Chalovich, and L A Stein, and L E Greene, and E Eisenberg
May 1991, Biochemistry,
J M Chalovich, and L A Stein, and L E Greene, and E Eisenberg
August 2001, Biophysical journal,
J M Chalovich, and L A Stein, and L E Greene, and E Eisenberg
July 1989, Biochemistry,
J M Chalovich, and L A Stein, and L E Greene, and E Eisenberg
August 1990, Biochemical Society transactions,
J M Chalovich, and L A Stein, and L E Greene, and E Eisenberg
December 1979, Journal of biochemistry,
J M Chalovich, and L A Stein, and L E Greene, and E Eisenberg
May 1972, Journal of molecular biology,
J M Chalovich, and L A Stein, and L E Greene, and E Eisenberg
December 1979, Journal of biochemistry,
J M Chalovich, and L A Stein, and L E Greene, and E Eisenberg
July 1989, Biochemistry,
J M Chalovich, and L A Stein, and L E Greene, and E Eisenberg
March 2003, Biochemistry,
J M Chalovich, and L A Stein, and L E Greene, and E Eisenberg
June 1991, Biochemistry,
Copied contents to your clipboard!