The recognition of red blood cells by macrophages: role of phosphatidylserine and possible implications of membrane phospholipid asymmetry. 1984

A J Schroit, and Y Tanaka, and J Madsen, and I J Fidler

The recognition of phosphatidylserine (PS) by macrophages was investigated using inside-out (IO) red blood cell (RBC) ghosts and RBC displaying PS in their surface membranes. This was accomplished by employing unmodified pathologic sickle RBC which contain endogenous PS in their outer membrane leaflet, and RBC modified by the transfer of an exogenous fluorescent PS analog. Proper insertion of exogenous PS was confirmed by monitoring the degree to which cell-associated lipid fluorescence was dequenched following transfer of 1-acyl-2-[(N-4-nitro-benzo-2-oxa-1,3 diazole) aminocaproyl] phosphatidylserine (NBD-PS) from a population of self-quenched donor vesicles. Inside-out RBC ghosts were endocytosed approximately 3 times faster than were right side-out control populations. Similarly, using NBD-PS vesicles at concentrations at which dilution of all the cell-associated analog in the recipient RBC could be unequivocally confirmed, we observed that the uptake of NBD-PS treated RBC by macrophages was significantly increased over that of control RBC populations. Fluorescence and electron microscopic observations revealed the formation of typical RBC-macrophage rosettes that were morphologically distinct from opsonized RBC-macrophage rosettes. Enhanced RBC binding to macrophages was also obtained with deoxygenated reversibly sickled cells (RSC); the enhancement correlated with increased exposure of outer leaflet PS in these cells. These findings suggest that PS is recognized by macrophages and that its exposure in the outer leaflet of RBC may have significant pathophysiologic implications.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009327 4-Chloro-7-nitrobenzofurazan A benzofuran derivative used as a protein reagent since the terminal N-NBD-protein conjugate possesses interesting fluorescence and spectral properties. It has also been used as a covalent inhibitor of both beef heart mitochondrial ATPase and bacterial ATPase. Chloronitrobenzoxadiazole,NBD Chloride,7-Chloro-4-nitrobenzofurazan,NBF-Cl,Nitrobenzoxadiazole Chloride,4 Chloro 7 nitrobenzofurazan,7 Chloro 4 nitrobenzofurazan,Chloride, NBD,Chloride, Nitrobenzoxadiazole,NBF Cl
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts

Related Publications

A J Schroit, and Y Tanaka, and J Madsen, and I J Fidler
January 1985, Bibliotheca haematologica,
A J Schroit, and Y Tanaka, and J Madsen, and I J Fidler
February 1997, Blood,
A J Schroit, and Y Tanaka, and J Madsen, and I J Fidler
May 1986, Proceedings of the National Academy of Sciences of the United States of America,
A J Schroit, and Y Tanaka, and J Madsen, and I J Fidler
September 2005, Haematologica,
A J Schroit, and Y Tanaka, and J Madsen, and I J Fidler
June 1996, Journal of leukocyte biology,
A J Schroit, and Y Tanaka, and J Madsen, and I J Fidler
January 1987, Methods in enzymology,
A J Schroit, and Y Tanaka, and J Madsen, and I J Fidler
January 2001, The Journal of biological chemistry,
A J Schroit, and Y Tanaka, and J Madsen, and I J Fidler
January 1989, Molecular and cellular biochemistry,
A J Schroit, and Y Tanaka, and J Madsen, and I J Fidler
January 2001, Pharmaceutical research,
A J Schroit, and Y Tanaka, and J Madsen, and I J Fidler
May 2021, Cellular and molecular life sciences : CMLS,
Copied contents to your clipboard!