Studies on the irreversible nature of prolactin binding to receptors. 1980

A A van der Gugten, and M J Waters, and G S Murthy, and H G Friesen

Studies on hormone-receptor interactions generally assume that the formation of a hormone-receptor complex is a reversible process. This assumption has been examined directly in three experiments using liver membrane receptor preparations from pregnant rats and ovine PRL (oPRL). In Exp 1, Receptors were preincubated with a range of concentrations of oPRL at 23 C for periods up to 60 min, washed thereafter to remove free oPRL, and subsequently incubated with [125I]iodo-oPRL (23 C) to determine specific binding. Preincubation of receptors (0.25 mg membrane protein) with oPRL (5 ng) for periods as brief as 10 min reduced subsequent binding of [125I]iodo-oPRL to receptor, suggesting incomplete dissociation of oPRL even after 30 h. In Exp 2 after preincubation for 30 min with oPRL and subsequent incubation with [125I]iodo-oPRL for 19 h, membranes were washed, and the dissociation (23 or 37 C) of [125I]iodo-oPRL from the hormone-receptor complex in the presence or absence of 1000 ng oPRL was studied. After 48 h, only 35-50% of the [125I]iodo-oPRL dissociated from the hormone-receptor complex even in the presence or excess oPRL, indicating a heterogeneity of binding sites (i.e. 50-65% irreversible; 35-50% reversible). When pregnant rat serum was used in place of oPRL or when rabbit mammary glands were used instead of rat livers to prepare receptor preparations, results were similar to those described above, except for the nearly complete dissociation (90%) obtained at 37 C using rabbit mammary gland receptors. In Exp 3 after incubation (10 min, 2 h, or 15 h) of rat liver receptors with [125I]iodo-oPRL plus various amounts of oPRL, the hormone-receptor complex could be completely dissociated with 5 M MgCl2, restoring binding affinity and capacity of receptor to their original values. Labeled oPRL dissociated by MgCl2 treatment from such a complex is capable of binding to fresh receptor. These data strongly suggest that the PRL-receptor interaction, particularly the rat liver receptor interaction with PRL under usual in vitro conditions, is not reversible to a significant degree. This is not due to hormone or receptor damage but to a significant number of binding sites (50-65%) in the receptor preparation which are not reversible except under extreme conditions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005260 Female Females

Related Publications

A A van der Gugten, and M J Waters, and G S Murthy, and H G Friesen
June 1971, Biochemical pharmacology,
A A van der Gugten, and M J Waters, and G S Murthy, and H G Friesen
October 1979, Biochimica et biophysica acta,
A A van der Gugten, and M J Waters, and G S Murthy, and H G Friesen
October 1984, General and comparative endocrinology,
A A van der Gugten, and M J Waters, and G S Murthy, and H G Friesen
December 1987, Analytical biochemistry,
A A van der Gugten, and M J Waters, and G S Murthy, and H G Friesen
January 1975, Drug metabolism and disposition: the biological fate of chemicals,
A A van der Gugten, and M J Waters, and G S Murthy, and H G Friesen
November 1986, Molecular pharmacology,
A A van der Gugten, and M J Waters, and G S Murthy, and H G Friesen
July 1975, Toxicology and applied pharmacology,
A A van der Gugten, and M J Waters, and G S Murthy, and H G Friesen
April 1982, Biochemical pharmacology,
A A van der Gugten, and M J Waters, and G S Murthy, and H G Friesen
June 1968, The Journal of biological chemistry,
A A van der Gugten, and M J Waters, and G S Murthy, and H G Friesen
May 1985, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!