Alpha adrenergic contributions to dysrhythmia during myocardial ischemia and reperfusion in cats. 1980

D J Sheridan, and P A Penkoske, and B E Sobel, and P B Corr

Alpha compared to beta adrenergic contributions to dysrhythmias induced by left anterior descending coronary occlusion and by reperfusion were assessed in chloralose-anesthetized cats (n = 96). Alpha receptor blockade with either phentolamine or prazosin significantly reduced the number of premature ventricular complexes during coronary reperfusion (321 +/- 62-14 +/- 10 premature ventricular complexes, P less than 0.001), abolished early ventricular fibrillation (from 25% in controls to 0%), and prevented the increase in idioventricular rate seen with coronary reperfusion. However, beta-receptor blockade was without effect. Ventricular dysrhythmias induced by coronary occlusion alone (without reperfusion) were attenuated markedly by alpha-receptor blockade under conditions in which perfusion (measured with radiolabeled microspheres) within ischemic zones was not affected. Alternative sympatholytic interventions including pretreatment with 6-hydroxydopamine to deplete myocardial norepinephrine from 8.8 +/- 1.4 to 0.83 +/- 0.2 ng/mg protein and render the heart unresponsive to tyramine (120 microgram/kg) attenuated dysrhythmias induced by both coronary occlusion and reperfusion in a fashion identical to that seen with alpha-receptor blockade. Although efferent sympathetic activation induced by left stellate nerve stimulation increased idioventricular rate from 66 +/- 6 to 144+/- 7 beats/min (P less than 0.01) before coronary occlusion, this response was blocked by propranolol but not by phentolamine. In contrast, during reperfusion the increase in idioventricular rate induced by left stellate nerve stimulation (to 203 +/- 14) was not inhibited by propranolol but was abolished by phentolamine (79 +/- 10). Intracoronary methoxamine (0.1 microM) in animals depleted of myocardial catecholamines by 6-hydroxydopamine pretreatment did not affect idioventricular rate before coronary occlusion. However, early after coronary reperfusion, methoxamine increased idioventricular rate from 33 +/- 7 to 123 +/- 21 beats/min (P less than 0.01). Thus, enhanced alpha-adrenergic responsiveness occurs during myocardial ischemia and appears to be primary mediator of the electrophysiological derangements and resulting malignant dysrhythmias induced by catecholamines during myocardial ischemia and reperfusion.

UI MeSH Term Description Entries
D008729 Methoxamine An alpha-1 adrenergic agonist that causes prolonged peripheral VASOCONSTRICTION. Methoxamedrin,Methoxamine Hydrochloride,Metoxamine Wellcome,Vasoxin,Vasoxine,Vasoxyl,Vasylox,Hydrochloride, Methoxamine,Wellcome, Metoxamine
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic

Related Publications

D J Sheridan, and P A Penkoske, and B E Sobel, and P B Corr
January 2019, Frontiers in immunology,
D J Sheridan, and P A Penkoske, and B E Sobel, and P B Corr
August 1996, The American journal of physiology,
D J Sheridan, and P A Penkoske, and B E Sobel, and P B Corr
November 1983, American heart journal,
D J Sheridan, and P A Penkoske, and B E Sobel, and P B Corr
January 1990, Circulation,
D J Sheridan, and P A Penkoske, and B E Sobel, and P B Corr
October 1993, Circulation research,
D J Sheridan, and P A Penkoske, and B E Sobel, and P B Corr
December 1988, Circulation,
D J Sheridan, and P A Penkoske, and B E Sobel, and P B Corr
September 1998, Molecular and cellular biochemistry,
D J Sheridan, and P A Penkoske, and B E Sobel, and P B Corr
May 1988, American heart journal,
D J Sheridan, and P A Penkoske, and B E Sobel, and P B Corr
February 2000, Circulation,
D J Sheridan, and P A Penkoske, and B E Sobel, and P B Corr
June 1994, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!