Secretion of chondroitin SO4 by monolayer cultures of chick embryo chondrocytes. 1980

J J Kim, and H E Conrad

Monolayer cultures of chick embryo tibial chondrocytes incorporate 35SO42- into chondroitin SO4 which is rapidly secreted from the cells into two extracellular pools. Part of the extracellular chondroitin SO4 is recovered in a soluble form in the culture medium, and the remainder is associated with the cell matrix from which it is released by isotonic trypsinization. At 38 degrees C labeled chondroitin SO4 appears in the cell matrix fraction within 5 min after addition of 35SO42- and in the culture medium fraction 15 min after 35SO42- is added. The intracellular pool of labeled chondroitin SO4 reaches a steady state level of 150 to 200 pmol of bound SO4 per 10(6) cells in 60 min, while the cell matrix and medium fractions increase at rates of 3 and 1 nmol of bound SO4 per h per 10(6) cells, respectively. After 4 h of labeling, less than 20% of the newly synthesized cell-associated chondroitin SO4 is in the intracellular fraction. By labeling cells for 15 min at 25 degrees C 80% of the cell-associated chondroitin 35SO4 is obtained in the intracellular fraction. This material is chased without lag into both the cell matrix fraction and the medium fraction. A mixture of NaF and NaCN, both at 30 mM, lowers the cellular ATP level to 15% of normal and blocks secretion of the intracellular chondroitin SO4 into both extracellular fractions. Colchicine at 10(-6) M gives a partial inhibition of both synthesis and secretion of chondroitinSO4. Sucrose density gradient sedimentation analysis of the intracellular chondroitin SO4 and the two extracellular fractions shows that all three fractions contain both a heavy and light proteoglycan fraction. The intracellular light proteoglycan fraction is secreted preferentially into the culture medium where it represents 30% of the total culture medium pool. The ratio of 6-sulfated GalNAc to 4-sulfated GalNAc in the heavy proteochondroitin SO4 fraction is approximately twice that found for the light fraction.

UI MeSH Term Description Entries
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D002356 Cartilage A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE. Cartilages
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002807 Chondroitin A mucopolysaccharide constituent of chondrin. (Grant & Hackh's Chemical Dictionary, 5th ed)
D002809 Chondroitin Sulfates Derivatives of chondroitin which have a sulfate moiety esterified to the galactosamine moiety of chondroitin. Chondroitin sulfate A, or chondroitin 4-sulfate, and chondroitin sulfate C, or chondroitin 6-sulfate, have the sulfate esterified in the 4- and 6-positions, respectively. Chondroitin sulfate B (beta heparin; DERMATAN SULFATE) is a misnomer and this compound is not a true chondroitin sulfate. Chondroitin 4-Sulfate,Chondroitin 6-Sulfate,Chondroitin Sulfate A,Chondroitin Sulfate C,Blutal,Chondroitin 4-Sulfate, Aluminum Salt,Chondroitin 4-Sulfate, Potassium Salt,Chondroitin 6-Sulfate, Potassium Salt,Chondroitin 6-Sulfate, Sodium Salt,Chondroitin Sulfate,Chondroitin Sulfate 4-Sulfate, Sodium Salt,Chondroitin Sulfate, Calcium Salt,Chondroitin Sulfate, Iron (+3) Salt,Chondroitin Sulfate, Iron Salt,Chondroitin Sulfate, Potassium Salt,Chondroitin Sulfate, Sodium Salt,Chondroitin Sulfate, Zinc Salt,Chonsurid,Sodium Chondroitin Sulfate,Translagen,Chondroitin 4 Sulfate,Chondroitin 4 Sulfate, Aluminum Salt,Chondroitin 4 Sulfate, Potassium Salt,Chondroitin 6 Sulfate,Chondroitin 6 Sulfate, Potassium Salt,Chondroitin 6 Sulfate, Sodium Salt,Chondroitin Sulfate 4 Sulfate, Sodium Salt,Chondroitin Sulfate, Sodium,Sulfate, Chondroitin,Sulfate, Sodium Chondroitin,Sulfates, Chondroitin
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D003486 Cyanides Inorganic salts of HYDROGEN CYANIDE containing the -CN radical. The concept also includes isocyanides. It is distinguished from NITRILES, which denotes organic compounds containing the -CN radical. Cyanide,Isocyanide,Isocyanides
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy

Related Publications

J J Kim, and H E Conrad
April 1979, The Journal of biological chemistry,
J J Kim, and H E Conrad
October 1993, The Journal of biological chemistry,
J J Kim, and H E Conrad
January 1975, Connective tissue research,
J J Kim, and H E Conrad
August 1956, Journal of bacteriology,
J J Kim, and H E Conrad
December 1981, The Journal of biological chemistry,
Copied contents to your clipboard!