Transfection of molecularly cloned Friend murine leukemia virus DNA yields a highly leukemogenic helper-independent type C virus. 1980

A I Oliff, and G L Hager, and E H Chang, and E M Scolnick, and H W Chan, and D R Lowy

Unintegrated viral DNA was isolated via the Hirt procedure from mouse fibroblasts newly infected with Friend murine leukemia virus (F-MuLV) clone 201, a biologically cloned helper virus isolated from stocks of F-MuLV complex. A physical map of the unintegrated in vivo linear viral DNA was generated for several restriction endonucleases. The supercoiled viral DNA was digested with EcoRI, which cleaved the viral DNA at a unique site. The linearized viral DNA was then inserted into lambda gtWES.lambda B at the EcoRI site and cloned in an approved EK2 host. Eight independent lambda-mouse recombinants were identified as containing F-MuLV DNA inserts by hybridization with F-MuLV 32P-labeled complementary DNA. One of the F-MuLV DNA inserts was 9.1 kilobases (kb) and had the same restriction enzyme sites as the unintegrated linear F-MuLV DNA. Six inserts were 8.5 kb; each lacked a single copy of the terminally redundant sequences of the unintegrated linear viral DNA. One insert was 8.2 kb and contained a 0.9-kb deletion. After digestion with EcoRI, one recombinant DNA preparation containing an 8.5-kb insert was infectious for NIH 3T3 cells. Undigested recombinant DNA was not infectious. The infectivity of the EcoRI-digested DNA followed multihit kinetics, indicating that more than one molecule was required to register as an infectious unit. The virus isolated from this transfection (F-MuLV-57) was NB-ecotropic, helper-independent, and formed XC plaques. Inoculation of this virus into newborn NIH Swiss mice induced leukemia and splenomegaly in greater than 90% of animals within 3 to 4 weeks. The gross and microscopic abnormalities induced by F-MuLV clone 57 were identical to those seen with the original parent stocks of F-MuLV clone 201. These results indicate that this helper-independent F-MuLV can induce a rapid nonthymic leukemia in the absence of the spleen focus-forming virus.

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005622 Friend murine leukemia virus A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) producing leukemia of the reticulum-cell type with massive infiltration of liver, spleen, and bone marrow. It infects DBA/2 and Swiss mice. Friend Virus,Rowson-Parr Virus,Rowson Parr Virus,Virus, Friend,Virus, Rowson-Parr
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A I Oliff, and G L Hager, and E H Chang, and E M Scolnick, and H W Chan, and D R Lowy
January 1982, Journal of virology,
A I Oliff, and G L Hager, and E H Chang, and E M Scolnick, and H W Chan, and D R Lowy
September 1980, Journal of virology,
A I Oliff, and G L Hager, and E H Chang, and E M Scolnick, and H W Chan, and D R Lowy
December 1995, Journal of immunological methods,
A I Oliff, and G L Hager, and E H Chang, and E M Scolnick, and H W Chan, and D R Lowy
August 1981, Blood,
A I Oliff, and G L Hager, and E H Chang, and E M Scolnick, and H W Chan, and D R Lowy
January 1983, Leukemia research,
A I Oliff, and G L Hager, and E H Chang, and E M Scolnick, and H W Chan, and D R Lowy
October 1993, Journal of virology,
A I Oliff, and G L Hager, and E H Chang, and E M Scolnick, and H W Chan, and D R Lowy
July 1983, Virology,
A I Oliff, and G L Hager, and E H Chang, and E M Scolnick, and H W Chan, and D R Lowy
January 1980, Cold Spring Harbor symposia on quantitative biology,
A I Oliff, and G L Hager, and E H Chang, and E M Scolnick, and H W Chan, and D R Lowy
July 1982, The Journal of experimental medicine,
A I Oliff, and G L Hager, and E H Chang, and E M Scolnick, and H W Chan, and D R Lowy
December 1993, Journal of virology,
Copied contents to your clipboard!