Adenine nucleotide degradation by the obligate intracellular bacterium Rickettsia typhi. 1980

J C Williams

Adenosine 5'-triphosphate (ATP) was catabolized by whole cells and cell-free extracts of Rickettsia typhi to adenosine 5'-diphosphate (ADP) and then to adenosine 5'-monophosphate (AMP), the end product of ATP catabolism under the experimental conditions used. The only intermediate of the pathway from ATP to AMP which was identified by thin-layer chromatography and quantitated by the (14)C content was ADP, whereas products such as adenine, adenosine, hypoxanthine, inosine, and inosine 5'-monophosphate were not detected. The enzymes which could be theoretically responsible for the catabolism or the anabolism of AMP were not detected by standard assay procedures. Most importantly, 5'-nucleotidase or nonspecific phosphatase and AMP nucleosidase activities were undetectable under a variety of experimental conditions. Although these two enzymes remove AMP from the adenylate pool in other cells, they are apparently nonfunctional in R. typhi. The biosynthesis of ATP was initiated by adenylate kinase because no adenine phosphoribosyltransferase or adenosine kinase could be detected. Furthermore, AMP was transported intact without prior dephosphorylation. These observations suggest that for R. typhi the in vivo activity of adenine nucleotide interconversion was limited to the nucleotides, with AMP being the end product of ATP catabolism, and that the salvage of purine bases and nucleosides was not an essential feature of purine metabolism. These results elucidate the findings of a previous study which showed that in the absence of glutamate as a source of energy, the adenylate energy charge of resting cells of R. typhi is drastically lowered by the high proportion of AMP.

UI MeSH Term Description Entries
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000263 Adenylate Kinase An enzyme that catalyzes the phosphorylation of AMP to ADP in the presence of ATP or inorganic triphosphate. EC 2.7.4.3. Myokinase,AMP Kinase,ATP-AMP Phosphotransferase,ATP-AMP Transphosphorylase,Adenylokinase,ATP AMP Phosphotransferase,ATP AMP Transphosphorylase,Kinase, AMP,Kinase, Adenylate,Phosphotransferase, ATP-AMP,Transphosphorylase, ATP-AMP
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
Copied contents to your clipboard!