Some characteristics of Na/K-ATPase from rat intestinal basal lateral membranes. 1980

V Harms, and E M Wright

Basal lateral membrane vesicles were isolated from rat intestinal epithelial cells. The sodium potassium triphosphatase (Na/K-ATPase) of these plasma membranes has been characterized by (1) the molecular weight of the phosphorylated intermediate, (2) the sensitivity of the phosphorylated intermediate to hydroxylamine, (3) its ouabain binding constants, and (4) its susceptibility to digestion by pronase. The phosphorylated intermediate was shown by SDS polyacrylamide gel electrophoresis to be a protein of 100,000 Daltons apparent mol wt. Its extensive hydrolysis in hydroxylamine demonstrated that it was an acyl phosphate. The isolated basal lateral membranes bound ouabain with a dissociation constant, Km (1.5 x 10(5) M), similar to the inhibitory constant KI (3 X 10(-5) M), measured for ouabain inhibition of the Na/K-ATPase activity. The association rate constant measured for ouabaiation rate constants reported for other tissues and species. The high dissociation rate constant 3.6 x 10(-2) sec-1, is consistent with the insensitivity of the rat to ouabain. Digestion of the intact cells by pronase yielded basal lateral membranes in which the Na/K-ATPase had been unaffected. The phosphorylated intermediate ran as a sharp band at 100,000 Daltons on electrophoresis, and the ouabain dissociation constant appeared to be unchanged. In these membranes, protein stains of polyacrylamide gels revealed digestion of the major high mol wt proteins including the major protein at 100,000 Daltons. This suggests that the Na/K-ATPase represents a minor component, less than 1%, of the basal lateral membrane protein. From these characteristics of the phosphorylated intermediate and the ouabain binding constants, we conclude that the Na/K-ATPase of the basal lateral membranes of rat intestinal epithelial cells is similar to that found in other tissues and species. Estimates of the number of pump sites and the turnover number predict rates of Na transport that are consistent with observed values.

UI MeSH Term Description Entries
D007583 Jejunum The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum. Jejunums
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011402 Pronase A proteolytic enzyme obtained from Streptomyces griseus. Pronase E,Pronase P,Protease XIV,XIV, Protease
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

V Harms, and E M Wright
August 1986, Investigative ophthalmology & visual science,
V Harms, and E M Wright
August 1981, Biochimica et biophysica acta,
V Harms, and E M Wright
January 1988, Ukrainskii biokhimicheskii zhurnal (1978),
V Harms, and E M Wright
January 1984, Progress in clinical and biological research,
V Harms, and E M Wright
May 1977, The American journal of physiology,
V Harms, and E M Wright
December 1978, The Journal of membrane biology,
V Harms, and E M Wright
April 2000, The Journal of biological chemistry,
Copied contents to your clipboard!