Transport ATPases in anion and proton transport. 1980

S L Bonting, and J J de Pont, and J M van Amelsvoort, and J J Schrijen

Studies in our laboratory have shown that the anion-sensitive Mg-ATPase is located in mitochondria, but not in the plasma membrane of rabbit gastric mucosa, trout gill, rabbit kidney and rat pancreas; whereas in rabbit erythrocyte membrane, it is part of the Ca-Mg activated ATPase system. These findings appear to rule out a function of the anion-sensitive ATPase in the transport of anions and protons across the plasma membrane in these tissues. On the other hand, the K-activated ATPase in a gradient-purified vesicle fraction of pig gastric mucosa mediates proton uptake in exchange for K+ in the presence of ATP, in agreement with earlier findings of other investigators. The enzyme requires a phospholipid environment for its activity. Studies of arginine modification with butanedione in the presence or absence of ATP and its analogues, and of activating cations indicate that the enzyme contains an essential arginine group involved in ATP binding; and that K+ induces a conformational change, which leads to decreased ATP binding and probably coincides with enzyme dephosphorylation. Similar studies of sulfhydryl modification with DTNB indicate that the enzyme contains an essential sulfhydryl group, which does not appear to be directly involved in ATP binding, but rather that ATP binding may induce a conformational change which makes the sulfhydryl group less accessible.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D003931 Diacetyl Carrier of aroma of butter, vinegar, coffee, and other foods. 2,3-Butanedione,Biacetyl,Diketobutane,Dimethyldiketone,Dimethylglyoxal,2,3 Butanedione
D004228 Dithionitrobenzoic Acid A standard reagent for the determination of reactive sulfhydryl groups by absorbance measurements. It is used primarily for the determination of sulfhydryl and disulfide groups in proteins. The color produced is due to the formation of a thio anion, 3-carboxyl-4-nitrothiophenolate. 5,5'-Dithiobis(2-nitrobenzoic Acid),DTNB,Ellman's Reagent,5,5'-Dithiobis(nitrobenzoate),Acid, Dithionitrobenzoic,Ellman Reagent,Ellmans Reagent,Reagent, Ellman's
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

S L Bonting, and J J de Pont, and J M van Amelsvoort, and J J Schrijen
January 1980, Annals of the New York Academy of Sciences,
S L Bonting, and J J de Pont, and J M van Amelsvoort, and J J Schrijen
December 1995, Clinical and experimental pharmacology & physiology,
S L Bonting, and J J de Pont, and J M van Amelsvoort, and J J Schrijen
December 2003, Journal of plant research,
S L Bonting, and J J de Pont, and J M van Amelsvoort, and J J Schrijen
September 1982, Federation proceedings,
S L Bonting, and J J de Pont, and J M van Amelsvoort, and J J Schrijen
June 2022, Nature cell biology,
S L Bonting, and J J de Pont, and J M van Amelsvoort, and J J Schrijen
August 1992, Current opinion in cell biology,
S L Bonting, and J J de Pont, and J M van Amelsvoort, and J J Schrijen
January 1986, Annual review of cell biology,
S L Bonting, and J J de Pont, and J M van Amelsvoort, and J J Schrijen
April 1979, Biokhimiia (Moscow, Russia),
S L Bonting, and J J de Pont, and J M van Amelsvoort, and J J Schrijen
January 1982, Annals of the New York Academy of Sciences,
S L Bonting, and J J de Pont, and J M van Amelsvoort, and J J Schrijen
February 2022, Biochimica et biophysica acta. Biomembranes,
Copied contents to your clipboard!