Deoxyribonuclease I generates single-stranded gaps in chromatin deoxyribonucleic acid. 1980

D E Riley

Production of 10-base multiple DNA ladder fragments during DNase I digestion of chromatin is explained by a model which does not involve site-specific nicking by the DNase I. This model was tested because it explains why 10-base (actually 10.4 base) multiple-related fragments are paradoxically generated by both endonucleolytic (DNase I) and exonucleolytic (exonuclease III) mechanisms. This new model also explains the phenomenon of substantial single-stranded DNA production during DNase I digestion of chromatin. The latter phenomenon has been widely observed but is not explained by previous models. The single-stranded gap model to be presented makes testable predictions. Primarily, these are that DNase I produces single-stranded gaps in chromatin DNA and that the termini of 10-base multiple ladder fragments are separated by single-stranded gaps. Single-stranded gap production by DNase I was confirmed by a number of methods. Sensitivity of ladder band components (from DNase I but not staphylococcal nuclease digests) to S1 nuclease suggested that the ladder fragments themselves may compose a significant portion of these gaps. Separation of ladder fragment termini by single-stranded gaps was verified by demonstrating both resistance to the nick-specific NAD+-dependent ligase and sensitivity to T4 ligase which can ligate across gaps. Many single-stranded gaps, occurring both individually and clusters, were observed by electron microscopy using either cytochrome c labeling (where the gaps) are thinner than duplex) or gene 32 protein labeling (gaps thicker than duplex). Gap sizes were estimated by protecting them with gene 32 protein and digesting away unprotected duplexes. By this method, gap sizes fall into a ladder distribution (from 10 or 20 bases up to 120 bases), which, at least in the region of the shorter sizes, clearly indicates the sizes of single-stranded gaps formed in chromatin by DNase I.

UI MeSH Term Description Entries
D007942 Leukemia, Experimental Leukemia induced experimentally in animals by exposure to leukemogenic agents, such as VIRUSES; RADIATION; or by TRANSPLANTATION of leukemic tissues. Experimental Leukemia,Experimental Leukemias,Leukemia Model, Animal,Leukemias, Experimental,Animal Leukemia Model,Animal Leukemia Models,Leukemia Models, Animal
D008836 Micrococcal Nuclease An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1. Staphylococcal Nuclease,TNase,Thermonuclease,Thermostable Nuclease,Nuclease, Micrococcal,Nuclease, Staphylococcal,Nuclease, Thermostable
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D011088 DNA Ligases Poly(deoxyribonucleotide):poly(deoxyribonucleotide)ligases. Enzymes that catalyze the joining of preformed deoxyribonucleotides in phosphodiester linkage during genetic processes during repair of a single-stranded break in duplex DNA. The class includes both EC 6.5.1.1 (ATP) and EC 6.5.1.2 (NAD). DNA Joinases,DNA Ligase,Polydeoxyribonucleotide Ligases,Polydeoxyribonucleotide Synthetases,T4 DNA Ligase,DNA Ligase, T4,Joinases, DNA,Ligase, DNA,Ligase, T4 DNA,Ligases, DNA,Ligases, Polydeoxyribonucleotide,Synthetases, Polydeoxyribonucleotide
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I

Related Publications

D E Riley
September 1962, Archives of biochemistry and biophysics,
D E Riley
May 1961, International journal of radiation biology and related studies in physics, chemistry, and medicine,
D E Riley
November 1995, Redox report : communications in free radical research,
Copied contents to your clipboard!