Phosphorylation of low molecular weight proteins in purified preparations of rat heart sarcolemma and sarcoplasmic reticulum. 1980

J M Lamers, and J T Stinis

A rat heart sarcolemmal preparation could be obtained in which both 5'-nucleotidase and adenylate cyclase were enriched approx. 9-fold by subjecting a homogenate to a discontinuous sucrose gradient, without the use of a high salt extraction. After incubation of this fraction with Mg[gamma-32P]ATP, the majority of 32P incorporated was present in 24 000- and 9000-dalton protein components. Only when a heart cytosol fraction or a purified cyclic AMP-dependent protein kinase was added, was enhancement of 32P-incorporaton found by addition of cyclic AMP. The 9000- and 24 000-dalton proteins appeared to be interconvertible. The degree of conversion could be affected by changing the temperature during solubilizaion of the membranes in SDS prior to electrophoresis. This suggested that the 24 000-dalton protein does not correspond to phospholamban, first identified by others in canine heart sarcoplasmic reticulum. Moreover, it could be excluded that the 24 000-dalton protein was derived from contaminating myofibrillar troponin I. When the sarcolemmal fraction was preincubated with Ca2+, Mg2+, ATP and oxalate, contaminating sarcoplasmic reticulum vesicles, loaded with calcium oxalate, settled to a greater density in the sucrose gradient. Membrane constituents other than those with enzymatic activity were monitored to confirm the separation between sarcolemmal and sarcoplasmic reticulum membranes: Coomassie blue staining material, sialic acid, cholesterol and phospholipid. The 24 000- and 9000-dalton proteins were equally distributed among the sarolemmal and sarcoplasmic reticulum fractions present in the sucrose gradient. However, the rate of 32P-incorporation in the presence of heart cytosol fraction was much slowr in the sarcoplasmic reticulum than in the sarcolemmal fraction.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009708 Nucleotidases A class of enzymes that catalyze the conversion of a nucleotide and water to a nucleoside and orthophosphate. EC 3.1.3.-.
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP

Related Publications

J M Lamers, and J T Stinis
January 1982, Annual review of physiology,
J M Lamers, and J T Stinis
November 1979, Biokhimiia (Moscow, Russia),
J M Lamers, and J T Stinis
July 1985, Biochimica et biophysica acta,
J M Lamers, and J T Stinis
October 1979, Journal of molecular and cellular cardiology,
J M Lamers, and J T Stinis
September 1998, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!