A rearranged DNA sequence possibly related to the translocation of immunoglobulin gene segments. 1980

M Steinmetz, and W Altenburger, and H G Zachau

A 5.3 kb EcoRI fragment (T3, abbreviations in ref. 2) has been cloned from DNA of a kappa light chain producing mouse myeloma. The fragment hybridizes to the k' flanking sequences of the J1 gene segment but not to C gene sequences of kappa light chain DNA. Restriction nuclease mapping and partial nucleotide sequencing showed that the fragment consists of sequences from the 5' side of the J1 and form the 3' side of a V gene segment, which apparently had been linked in a genomic rearrangement process. These rearranged flanking sequences are not the flanking sequences of the V and J gene segments which had been joined to form the two kappa light chain genes of the myeloma. Fragments with the hybridization properties of T3 have been found also in two other kappa and one lambda chain producing myelomas. The linking of flanking sequences in the myeloma genome is discussed with respect to the mechanism of recombination between V and J gene segments.

UI MeSH Term Description Entries
D007145 Immunoglobulin kappa-Chains One of the types of light chains of the immunoglobulins with a molecular weight of approximately 22 kDa. Ig kappa Chains,Immunoglobulins, kappa-Chain,kappa-Immunoglobulin Light Chains,Immunoglobulin kappa-Chain,kappa-Chain Immunoglobulins,kappa-Immunoglobulin Light Chain,kappa-Immunoglobulin Subgroup VK-12,kappa-Immunoglobulin Subgroup VK-21,Chains, Ig kappa,Immunoglobulin kappa Chain,Immunoglobulin kappa Chains,Immunoglobulins, kappa Chain,Light Chain, kappa-Immunoglobulin,Light Chains, kappa-Immunoglobulin,kappa Chain Immunoglobulins,kappa Chains, Ig,kappa Immunoglobulin Light Chain,kappa Immunoglobulin Light Chains,kappa Immunoglobulin Subgroup VK 12,kappa Immunoglobulin Subgroup VK 21,kappa-Chain, Immunoglobulin,kappa-Chains, Immunoglobulin
D007147 Immunoglobulin Light Chains Polypeptide chains, consisting of 211 to 217 amino acid residues and having a molecular weight of approximately 22 kDa. There are two major types of light chains, kappa and lambda. Two Ig light chains and two Ig heavy chains (IMMUNOGLOBULIN HEAVY CHAINS) make one immunoglobulin molecule. Ig Light Chains,Immunoglobulins, Light-Chain,Immunoglobulin Light Chain,Immunoglobulin Light-Chain,Light-Chain Immunoglobulins,Chains, Ig Light,Chains, Immunoglobulin Light,Immunoglobulins, Light Chain,Light Chain Immunoglobulins,Light Chain, Immunoglobulin,Light Chains, Ig,Light Chains, Immunoglobulin,Light-Chain, Immunoglobulin
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010954 Plasmacytoma Any discrete, presumably solitary, mass of neoplastic PLASMA CELLS either in BONE MARROW or various extramedullary sites. Plasma Cell Tumor,Plasmocytoma,Plasma Cell Tumors,Plasmacytomas,Plasmocytomas,Tumor, Plasma Cell,Tumors, Plasma Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA

Related Publications

M Steinmetz, and W Altenburger, and H G Zachau
July 1982, Nucleic acids research,
M Steinmetz, and W Altenburger, and H G Zachau
September 1994, European journal of immunology,
M Steinmetz, and W Altenburger, and H G Zachau
July 1980, Nature,
M Steinmetz, and W Altenburger, and H G Zachau
January 1992, Gene,
M Steinmetz, and W Altenburger, and H G Zachau
January 1991, Molekuliarnaia biologiia,
M Steinmetz, and W Altenburger, and H G Zachau
January 1995, Journal of immunology (Baltimore, Md. : 1950),
M Steinmetz, and W Altenburger, and H G Zachau
July 2006, Immunogenetics,
M Steinmetz, and W Altenburger, and H G Zachau
February 1995, European journal of immunology,
M Steinmetz, and W Altenburger, and H G Zachau
January 2014, Toxicon : official journal of the International Society on Toxinology,
M Steinmetz, and W Altenburger, and H G Zachau
June 1983, Science (New York, N.Y.),
Copied contents to your clipboard!