Purified proenzyme C1r. Some characteristics of its activation and subsequent proteolytic cleavage. 1980

G J Arlaud, and C L Villiers, and S Chesne, and M G Colomb

1. Upon incubation for 1 h at 37 degrees C, proenzymic C1r was activated by a proteolytic cleavage comparable to that observed in vivo; after reduction and alkylation, two fragments of apparent molecular weights 57 000 and 35 000 were evident on sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis. The activation kinetics were slightly sigmoidal and nearly independent of C1r concentration. They were characterized by a marked thermal dependence (activation energy = 45 kcal/mol). The reaction was inhibited by calcium and p-nitrophenyl-p'-guanidinobenzoate, but poorly sensitive to di-isopropyl phosphorofluoridate. The dependence of the activation rate on pH was unusual; it decreased progressively in the acid range (pH 4.5-6.5) which coincides with the dissociation of the C1r-C1r dimer. Above pH 6.5, the rate increased slightly and showed no clear maximum. These results are consistent with an intramolecular autocatalytic activation mechanism involving the pro-site of each subunit of the C1r-C1r dimer. 2. During a 5 h incubation period at 37 degrees C, C1r underwent two proteolytic cleavages which led to the successive removal of two fragments, alpha (35 000) and beta (7000-11 000) from each subunit, leaving a dimeric molecule of reduced size (Mr = 110 000; s20,w = 6.1 S). The proteolytic process was nearly independent of C1r concentration and characterized by a pH optimum at 8.5-9.0, and a high activation energy (36.8 kcal/mol). Calcium and p-nitrophenyl-p'-guanidinobenzoate, and also di-isopropyl phosphorofluoridate and benzamidine were inhibitors of this reaction. The product, C1r II, retained the original antigenic properties of C1r and a functional active site, but lost the capacity to bind C1s. These results are consistent with an autocatalytic intramolecular proteolysis mediated by the active site of each subunit of the C1r-C1r dimer.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D003166 Complement Activating Enzymes Enzymes that activate one or more COMPLEMENT PROTEINS in the complement system leading to the formation of the COMPLEMENT MEMBRANE ATTACK COMPLEX, an important response in host defense. They are enzymes in the various COMPLEMENT ACTIVATION pathways. Activating Enzymes, Complement,Enzymes, Complement Activating
D003172 Complement C1 The first complement component to act in the activation of CLASSICAL COMPLEMENT PATHWAY. It is a calcium-dependent trimolecular complex made up of three subcomponents: COMPLEMENT C1Q; COMPLEMENT C1R; and COMPLEMENT C1S at 1:2:2 ratios. When the intact C1 binds to at least two antibodies (involving C1q), C1r and C1s are sequentially activated, leading to subsequent steps in the cascade of COMPLEMENT ACTIVATION. C1 Complement,Complement 1,Complement Component 1,C1, Complement,Complement, C1,Component 1, Complement
D003174 Complement C1 Inactivator Proteins Serum proteins that inhibit, antagonize, or inactivate COMPLEMENT C1 or its subunits. Complement 1 Esterase Inhibitors,Complement C1 Inactivating Proteins,Complement C1 Inhibiting Proteins,Complement C1 Inhibitor Proteins,Complement C1r Protease Inhibitor Proteins,Complement C1s Esterase Inhibitor Proteins,Complement Component 1 Inactivator Proteins
D004792 Enzyme Precursors Physiologically inactive substances that can be converted to active enzymes. Enzyme Precursor,Proenzyme,Proenzymes,Zymogen,Zymogens,Precursor, Enzyme,Precursors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

G J Arlaud, and C L Villiers, and S Chesne, and M G Colomb
February 1976, Journal of immunology (Baltimore, Md. : 1950),
G J Arlaud, and C L Villiers, and S Chesne, and M G Colomb
August 1984, Clinica chimica acta; international journal of clinical chemistry,
G J Arlaud, and C L Villiers, and S Chesne, and M G Colomb
December 1981, Acta pathologica et microbiologica Scandinavica. Section C, Immunology,
G J Arlaud, and C L Villiers, and S Chesne, and M G Colomb
September 1986, Biochimica et biophysica acta,
G J Arlaud, and C L Villiers, and S Chesne, and M G Colomb
February 2000, Clinica chimica acta; international journal of clinical chemistry,
G J Arlaud, and C L Villiers, and S Chesne, and M G Colomb
November 2008, Journal of the American Society of Nephrology : JASN,
G J Arlaud, and C L Villiers, and S Chesne, and M G Colomb
August 1991, Journal of immunological methods,
G J Arlaud, and C L Villiers, and S Chesne, and M G Colomb
May 1950, Blood,
G J Arlaud, and C L Villiers, and S Chesne, and M G Colomb
January 2013, PloS one,
G J Arlaud, and C L Villiers, and S Chesne, and M G Colomb
February 1989, The Biochemical journal,
Copied contents to your clipboard!