Pharmacological differentiation of presynaptic inhibitory alpha-adrenoceptors and opiate receptors in the cat nictitating membrane. 1980

M L Dubocovich, and S Z Langer

1 The action of morphine, naturally occurring and synthetic opiate peptides on [3H]-noradrenaline release induced by nerve stimulation was studied in the isolated nerve muscle preparation of the cat nictitating membrane under experimental conditions in which the alpha-presynaptic receptors were blocked by phentolamine 1 microM. 2 Morphine and the naturally occurring peptides: [Met5]-enkephalin, [Leu5]-enkephalin and beta-endorphin reduced 3H-transmitter overflow and responses to nerve stimulation from the cat nictitating membrane, effects which were completely antagonized by naloxone 0.3 microM. The relative order of potency for the inhibition of the stimulation-induced 3H-transmitter overflow at the level of the IC50 (microM) was as follows: [Met5]-enkephalin (0.020 microM) greater than or equal to [Leu5]-enkephalin (0.036 microM) > morphine (0.3 microM) > beta-endorphin (1 microM). 3 The synthetic opiate pentapeptides: BW 180 C (Tyr-D-Ala-Gly-Phe-D-Leu), and BW834 C (Tyr-D-Ala-Gly-pClPhe-DLeu), which are resistant to enzymatic degradation were more potent than the enkephalins in reducing the stimulation-evoked transmitter overflow from the cat nictitating membrane. On the other hand, the tetrapeptide BW832 C, which lacks the D-leucine terminal of BW180 C l was less potent than the enkephalins in inhibiting neurotransmission. 4 In the presence of phenoxybenzamine 1 microM, 3H-transmitter overflow was increased 8 fold and the inhibition of neurotransmission by methionine-enkephalin was not affected. Exposure to phenoxybenzamine 10 microM increased [3H]-noradrenaline overflow 15 fold and antagonized the effects of methionine enkephalin on transmitter release. 5 In the cat nictitating membrane the inhibitory presynaptic opiate receptors are different from the presynaptic alpha-autoreceptors which regulate the release of noradrenaline elicited by nerve depolarization through a negative feed-back mechanism.

UI MeSH Term Description Entries
D008297 Male Males
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009541 Nictitating Membrane A fold of the mucous membrane of the CONJUNCTIVA in many animals. At rest, it is hidden in the medial canthus. It can extend to cover part or all of the cornea to help clean the CORNEA. Third Eyelid,Eyelid, Third,Eyelids, Third,Membrane, Nictitating,Membranes, Nictitating,Nictitating Membranes,Third Eyelids
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010643 Phenoxybenzamine An alpha-adrenergic antagonist with long duration of action. It has been used to treat hypertension and as a peripheral vasodilator. Dibenylene,Dibenyline,Dibenziran,Dibenzylin,Dibenzyline,Dibenzyran,Phenoxybenzamine Hydrochloride,Hydrochloride, Phenoxybenzamine
D010646 Phentolamine A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease. Fentolamin,Phentolamine Mesilate,Phentolamine Mesylate,Phentolamine Methanesulfonate,Phentolamine Mono-hydrochloride,Regitine,Regityn,Rogitine,Z-Max,Mesilate, Phentolamine,Mesylate, Phentolamine,Methanesulfonate, Phentolamine,Mono-hydrochloride, Phentolamine,Phentolamine Mono hydrochloride
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat

Related Publications

M L Dubocovich, and S Z Langer
October 1981, The Journal of pharmacology and experimental therapeutics,
M L Dubocovich, and S Z Langer
September 1977, The Journal of pharmacology and experimental therapeutics,
M L Dubocovich, and S Z Langer
October 1977, European journal of pharmacology,
M L Dubocovich, and S Z Langer
January 1978, Polish journal of pharmacology and pharmacy,
M L Dubocovich, and S Z Langer
January 1974, Indian journal of physiology and pharmacology,
M L Dubocovich, and S Z Langer
July 1966, The Journal of pharmacology and experimental therapeutics,
M L Dubocovich, and S Z Langer
March 1975, British journal of pharmacology,
Copied contents to your clipboard!